Privacy-Preserving Localization using Enclaves

Arslan Khan', Joseph I. Choi*, Dave (Jing) Tian', Tyler Ward*
Kevin R. B. Butler*, Patrick Traynor*, John M. Shea*, Tan F. Wong*
fPurdue University, {khan253, daveti} @purdue.edu
*University of Florida, {choijoseph007, tsward, butler, traynor, jshea, twong} @ufl.edu

Abstract—Localization is one form of cooperative spectrum
sensing that lets multiple sensors work together to estimate the
location of a target transmitter. However, the requisite exchange
of spectrum measurements leads to exposure of the physical loca-
tion of participating sensors. Furthermore, in some cases, a com-
promised participant can reveal the sensitive characteristics of all
participants. Accordingly, a lack of sufficient guarantees about
data handling discourages such devices from working together. In
this paper, we provide the missing data protections by processing
spectrum measurements within attestable containers or enclaves.
Enclaves provide runtime memory integrity and confidentiality
using hardware extensions and have been used to secure various
applications [1]-[8]. We use these enclave features as building
blocks for new privacy-preserving particle filter protocols that
minimize disruption of the spectrum sensing ecosystem. We then
instantiate this enclave using ARM TrustZone and Intel SGX,
and we show that enclave-based particle filter protocols incur
minimal overhead (adding 16 milliseconds of processing to the
measurement processing function when using SGX versus unpro-
tected computation) and can be deployed on resource-constrained
platforms that support TrustZone (incurring only a 1.01x increase
in processing time when doubling particle count from 10,000 to
20,000), whereas cryptographically-based approaches suffer from
multiple orders of magnitude higher costs. We effectively deploy
enclaves in a distributed environment, dramatically improving
current data handling techniques. To our best knowledge, this is
the first work to demonstrate privacy-preserving localization in
a multi-party environment with reasonable overhead.

I. INTRODUCTION

Cooperative spectrum sensing allows for wireless devices
to cooperatively measure channel usage across space, fre-
quency, and time. While such monitoring has a wide range
of important applications, including finding unused spectrum
for opportunistic use and spectrum-aware routing, cooperative
localization of RF emitters is among the most important.
Sensors deployed in multiple locations perform measurements
of a transmitted signal and exchange this information to arrive
at a more precise measurement than any single sensor could
produce alone. Applications of localization include: military
tracking of mobile targets [9], reclaiming unused spectrum
for secondary users [10], and monitoring wildlife [11].

One of the challenges with localization is limiting the
potential for data compromise. While sensor owners would
do best to cooperate in order to produce the best possible
estimate of the transmitter’s location, the shared spectrum
measurements can be intercepted by an adversary to localize
the measuring sensors. In many scenarios, sensors are owned
by multiple parties. Even in cases where all sensors are under
the control of a single party (e.g., military applications), the

compromise of any single device may yield the potentially
sensitive locations of all other sensors.

In this paper, we address the challenge of minimizing data
leakage while maximizing the benefits of measurement sharing
in cooperative spectrum sensing. To achieve these ends, we
consider a novel application of enclave-based computing to
preserve the location privacy of sensors. Enclaves are an
example of a trusted execution environment (TEE), whereby
secure regions of memory are maintained that allow the
execution of code unobservable from outside the enclave.
Enclaves incur low computational overhead when compared to
heavyweight cryptographic techniques. However, this isolation
requires that enclaves do not trust any system-level services,
such as system calls, IPC services, etc. Hence, we design
our work as a self-contained application, with well-defined
interfaces for properly vetting untrusted agents in the system.
While the low overhead and application partitioning enables
us to scale our design for any enclave system, we evaluate
our system on Intel Software Guard Extensions (SGX) [12]
and ARM TrustZone [13], which constitute the major market
share of TEE systems. To the best of our knowledge, this
is the first work to show that cooperative spectrum sensing
can be done privately with reasonable overhead using trusted
execution environments. In summary, we make the following
contributions:

o Apply Enclave-Based Computing to Spectrum Sens-
ing: We explore the design space of modern secure
computation for spectrum sensing and apply a novel
enclave-based approach for strong data protection.

o Design and Implement Hardened Spectrum Sensing:
We design and implement a particle filter-based protocol
for localization, protect the execution and privacy of this
system using enclaves, and demonstrate its application in
both centralized and decentralized architectures.

o Measure and Evaluate Performance using Enclaves:
We demonstrate that our approach substantially improves
security over traditional mechanisms, while adding only
minimal overhead. Computing a 20,000 particle measure-
ment function for Intel SGX and TrustZone, in either
centralized or distributed configuration, results in an over-
head less than 16ms and 267ms overhead respectively.

II. BACKGROUND

A. Localization by Particle Filter

Localization refers to the determination of some target trans-
mitter’s physical location based on the inputs provided by mul-

tiple sensors; each sensor contributes information based on its
spectrum measurements that can be fused with other sensors’
measurements to localize a target. Cooperating sensors are not
necessarily owned by a single entity; multiple parties may
share a common objective. Participants may not necessarily
trust one another and thus have an interest in minimizing
exposure of their sensors to any other participants or to outside
observers, who may potentially be adversarial. Localization
may be a continuous process that occurs at regular intervals,
such as when the target is a mobile transmitter.

Localization may be carried out with the help of a central
fusion center (FC) or in a distributed manner, discussed further
in Section III. One practical method for localization is the
particle filter [14]-[16]. Particle filters allow discretization
of the posterior belief' of a transmitter’s location in a way
that guarantees the amount of data being transferred. Particle
filters are also well-suited for handling noisy measurement
data affected by real-world environmental irregularities and an
ambiguous channel path-loss exponent (PLE).? Particle filters
do not require the prior assumption of a Gaussian relationship.
Alternative approaches to particle filters use the received signal
strength (RSS) and location of each sensor directly [17]-[22]
or rely on the power difference of arrival [23].

B. Enclaves

Enclaves are hardware-protected containers for holding and
performing operations on sensitive data, providing confiden-
tiality and integrity guarantees. Since enclave protections
originate from hardware, solutions built on enclaves run at
native execution speed. Another important property provided
by enclaves is attestability; that is, enclave users can verify
the integrity of the contents and functionality loaded within
an enclave before deciding to use it.

The current dominant iteration of the enclave concept is
given by Intel Software Guard Extensions (SGX) [12]. SGX
sets aside processor-enforced regions of memory, the contents
of which are only accessible from within the enclave and are
thus protected from unauthorized access by other applications
and even privileged code. When connecting to an enclave,
users may perform local attestation (for enclaves hosted by
the same physical machine) or remote attestation (for enclaves
hosted separately) to verify the enclave’s integrity.

ARM TrustZone [13] is another widely deployed approach
to TEE for embedded systems. TrustZone provides a a secure
world which acts as a secure enclave. Hardware logic in the
bus fabric together with processor core extensions make it
possible to isolate secure world assets from rest of the system.
System software can access secure world assets with the help
of Secure Monitor Calls (SMC).

III. DESIGN CONSIDERATIONS

We begin our discussion of secure localization techniques
by presenting our security model. We then explore the design
space to evaluate multiple options and finally explain the
design of our system.

!'As a function of the likelihood that the transmitter is located at the particle.
2PLE quantifies reduction of a signal or radio wave as it traverses a medium.

R -
Fusion Center

Transmltter

[:W [:
Wy Q9 /

’
[Sensor] (Transmitter)//

(8)

Fig. 1: Sensors (colored according to their various owners)
work together to locate a target transmitter. In centralized
localization (A), the fusion center (FC) takes measurement
inputs from all participants. In decentralized localization (B),
a leader elected among the sensors establishes an ordering, and
computation is distributed among the sensors, which iteratively
combine their measurement inputs and resample particles to
arrive at the final estimate.

A. Security Model

We assume the adversary does not already have a global
view? of all sensors present in the localization area, in which
case the location privacy of all sensors is trivially broken.
We do not consider colluding adversaries. We exclude side-
channel and microarchitectural attacks against enclaves.

1) Goal: Our goal is to preserve location privacy: no
participant should be able to determine the physical location
of any other participant involved in a localization round.
Data leakage should be minimized upon compromise (i.e.,
compromising a single participant should not leak others’
locations).

2) Architectures: We consider two different architectures:
centralized (ArchC) and decentralized (ArchD). Figure 1 il-
lustrates the differences between the two architectures. A
centralized architecture contains multiple sensor radios and
a central fusion center (FC) which processes sensor inputs to
estimate the location of a target. A decentralized architecture
has no trusted third party such as a permanent FC but instead
relies on the radios to perform any requisite computations.
For each localization round, a new “leader” is elected from
the sensors through a consensus protocol, which we assume
cannot be gamed by an adversary to substantially increase its

3This might be achieved by physically combing the area to discover sensor
radios or acquiring organizational deployment records that contain location
information.

likelihood of becoming the leader.* The leader is responsible
for: (a) coordinating communication between all participant
sensors in a round by establishing a hierarchical ordering and
(b) outputting the final estimate.

3) Participants: Participants include sensor radios (in both
architectures), and an additional fusion center (in ArchC only).
Participants exist in one of three modes: (a) honest-but-
curious, (b) malicious, and (c) compromised. Compromised
participants are originally honest-but-curious and later taken
over by a malicious adversary, rather than being under a
malicious adversary’s control from the onset. For the purposes
of our analysis, we give the same treatment to malicious and
compromised modes.

While we might, in general, assume participants will be
honest-but-curious and share the common goal of producing
a correct estimated location of the target, we cannot ignore
the possibility of malicious adversaries (for example, in a
hostile military setting). We describe below what each type
of participant is able to do.

a) Honest-but-curious: Honest-but-curious participants
faithfully carry out the localization protocol, so as to produce
a correct estimate of the target transmitter’s location, but may
use any available information to attempt to break the location
privacy of the other participants. In ArchC, the FC has access
to the entire set of collected measurements and may use this to
learn the physical locations of all contributing sensors in the
localization round, as shown in Fig 2. In ArchD, individual
sensors will attempt to expose the location of those sensors
that provide them with input, as shown in Figure 3.

b) Malicious or Compromised: Malicious (or compro-
mised) participants do not care about arriving at a correct es-
timate of the transmitter’s location. Such participants may even
actively seek to undermine the localization process. They may
inject messages carrying crafted measurements or incorrect
intermediate results; they may also drop legitimate messages.
Specifically, this means malicious sensors may report fake
measurements that sway intermediate and/or final outputs
to leak something about other sensors’ locations. Malicious
sensors may drop legitimate messages and replace these with
additional crafted inputs to further misdirect the process;
multiple malicious/compromised sensors may collude for more
productive misdirection. Alternatively, malicious sensors may
engage in this behavior to prevent the target from being
localized. A malicious FC may output a wrong estimate for
the same purpose. For this reason, hostile military settings
specifically require appropriate measures to protect against
malicious adversaries.

This architecture also relies on the establishment of sym-
metric keys between pairs of sensors, generally coordinated
by the leader.

4Under traditional leader election schemes, such as bully and ring election,
an adversary may lie about its identity to win an election. Abraham et al. [24]
demonstrate alternative techniques for leader election (informed by game
theory) which are able to prescribe an equal probability of being elected to
each agent.

- ~
~
~
’

/ —~ N \\
/
! . \

Fig. 2: Centeralized Architecture: the FC handles all sensors’
inputs, making it a single point-of-faliure and a favorite target
for hackers. Hence, malicious software running on an FC can
break the location privacy of all sensors.

B. Design Exploration

Privacy-preserving localization can be achieved using mul-
tiple techniques such as garbled circuits, fully homomorphic
encryption (FHE), secure multi-party computation (MPC),
and enclave-based execution. The cryptographic techniques
such as MPC and FHE provide a good setting for our task.
Unfortunately, while such techniques have improved their per-
formance by orders of magnitude in the past decade [25], they
remain extremely resource-intensive. For instance, recent work
demonstrated that garbled circuit-based techniques required
an average of 300x increase in runtime for relatively small
circuits [26]. Accordingly, from a performance perspective
alone, such techniques remain impractical. However, existing
work has shown that cryptography techniques incur a very
high overhead, making them infeasible in real systems. Due
to these constraints, we revert to enclave-based architectures.

There is a variety of emerging enclave-based architectures
and approaches, but the most popular enclave types are Intel’s
SGX and ARM'’s TrustZone. Both are of interest for privacy-
preserving spectrum sensing based on their properties. We
choose SGX as a starting point to take advantage of its remote
attestation feature, which we require in our setting. Remote
attestation [27], as offered by SGX, makes it possible to verify
the integrity of enclave code and execution environment re-
motely. Jin et al. [28] previously demonstrated how SGX could
be used to perform remote attestation of remote terminals and
Internet-of-Things (IoT) devices.

While Intel SGX is common in server systems, ARM
TrustZone [13] is widely available on Android and embedded
devices. A critically important feature missing from Trust-
Zone, which we require in our setting, is remote attestation. To
this end, existing work [29], [30] has tried to propose design
schemes to bridge this gap. With remote attestation in place,
a TrustZone-based solution could be more readily adopted by
resource-constrained devices such as sensors, making use of
the infrastructure already in place. and can be easily deployed
on resource-constrained devices such as sensors. Based on
our design exploration, we adopt both Intel SGX and ARM
TrustZone to deploy our localization algorithm.

IV. DESIGN

We consider the addition of enclaves to both centralized
and decentralized architectures, introduced in Section III. We
first present the general requirements and requirements specific
to each architecture. Next, we consider the appropriateness

@E'EJ!!! =
@S

Sensor
Fig. 3: Distributed Architecture: For localization, each round a
new leader is elected on run time which acts similarly as a FC.
This architecture removes the single point-of-failure, making
it more robust compared to ArchC. However, a malicious node

can still use the spectrum observations to identify thelocation
of all downstream nodes.

of enclaves to answer each of these requirements. We then
consider the arrangement of enclaves necessary to satisfy each
requirement, and analyze the security of each arrangement
to make sure location privacy is preserved, considering both
honest-but-curious and malicious participants.

Despite differences between architectures in terms of mes-
sage flow, the same underlying algorithm is applicable to both.
Hence, there are several requirements that are applicable to
both architectures. We describe the common needs:

N1: Preventing eavesdropping. Sensor inputs that are trans-
mitted in the clear may be intercepted by an adversary. As
a step during remote attestation, a symmetric key is provi-
sioned for all future communication with the target enclave.
Hence, the sensor can be confident that its inputs will not be
compromised during transit to other enclaves.

N2: Confirming authenticity of the fusion result. A mali-
cious FC (ArchC) or leader (ArchD) might disregard the true
fusion result and disseminate an incorrect result. This could
be mitigated by having the fusion code enclave, which is
measured by each sensor during attestation, directly return the
fusion result to sensors over the established secure channels.
N3: Defeating crafted/dishonest inputs. An enclave may be
required of all sensors contributing to the localization when
considering the presence of malicious sensors. Parts of the
spectrum measurement could then be integrated with each
sensor’s enclave and verified by the enclaves via attestation to
ensure only authentic spectrum measurements are contributed
to the ongoing localization.

A. Centralized Architecture

The centralized architecture (ArchC) contains any number
of sensors and a single fusion center (FC). Sensors provide
input to the FC but do not interact with the other sensors nor
handle their inputs.

The addition of enclaves could help meet multiple needs in
this architecture. The needs are illustrated in Figure 4 along-
side the enclave arrangement necessary for meeting each need.
Besides the general needs, we describe each of ArchC specific
needs below in more detail:

N1C: Establishing trust in the FC. By having each sen-
sor check the measurement of the destination FC’s enclave
during remote attestation, the sensor can determine whether
its provided input will be processed as expected and without

ArchC
Fusion

Enclave
Center a

1.). 3

)r)}

(1) Attestation of FC’s enclave
(2) Secure channel prevents eavesdropping

¢ (3) Authentic fusion result returned

Enclave ﬂ
@)

Sensor

(4) Attestation of sensor’s enclave, and
authenticity of fusion inputs

Fig. 4: Various design requirements for ArchC. Contributing
sensors attests FC’s enclave before trusting with sensitive
inputs. Inputs and fusion results are transmitted over a secure
channel established during attestation. Sensors’ enclaves can
be attested by the FC to ensure authenticity of the fusion inputs
it receives from participating sensors.

being leaked outside the enclave (e.g., to the FC owner).
Each sensor may then independently decide whether or not
to trust the FC with its localization input during the current
localization round.

To meet needs N1C, N1, and N2, it is sufficient to require an
enclave to be hosted by the FC. Individual sensor compromise
permits an adversary to learn the location of that specific
sensor but nothing more. While an enclave is hosted by the
FC, even privileged software on the device would be unable
to look inside the FC to extract the sensitive inputs. These
inputs would only be provided by each sensor to the FC if the
attestation result is good.

To meet need N3, in which case the FC in turn wants some
guarantees about the fusion inputs it is receiving from the sen-
sors, it becomes necessary to have all sensors host their own
enclaves. The assurance through attestation that a sensor will
faithfully carry out the sense-and-forward procedure eliminates
the need for other methods of detecting falsification of fusion
inputs [31], [32].

B. Decentralized Architecture

The decentralized architecture (ArchD) is entirely dependent
on the sensors; there is no separate third party acting as a
facilitator. The fusion operation is distributed across the entire
set of sensors. One of the sensors is elected as the leader
through a consensus protocol. A new leader may be elected
for each round if there is concern about the potential abuse of
this role. The leader is responsible for facilitating the current
round of localization and does not contribute its own input.
The leader is restricted from participating in the localization
round to prevent affording it any unintended advantage at
breaking location privacy of the other sensors. Specifically, the
leader will place sensors in a hierarchical ordering according
to their Signal-to-Noise Ratio (SNR) values. A higher SNR
value represents a signal of better quality that is paired with
low levels of unwanted noise or interference. These values are
received from all sensors participating in a round. SNR values

5No direct exfiltration can be performed. We consider side-channel vulner-
abilities and microarchitectural attacks that can lead to covert exfiltration in
Appendix B.

ArchD)
Leader | Enclave ﬂ €< — — — > S;::Sr Enclave ﬂ
(©) (1a), (2), (3)
A N
/ N
(5) Dedicated leader reduces / B~ (1a),)
sensor complexity:
can be attested and / ~ ~ ®) (1b), (4)
return fusion result / N
/ | sensor | Enclave [
/ (1a), 2, ®)

/)r
/ (1a) Attestation of recipient’s enclave
/ (2) Secure channel prevents eavesdropping

/

% ¢ (8) Authentic fusion result returned
(1b) Attestation of sender’s enclave
Sensor Enclave ﬂ (4) Bad actor can be detected,
(1b), (4) and its input discarded by recipient

Fig. 5: Various requirements for ArchD. Enclaves can be used
to establish bidirectional trust among pairs of sensors that
exchange information, prevent eavesdropping on the secure
channel established during attestation, and return an authentic
fusion result.

provide only limited information about a sensor’s relative
location to the target; hence, SNR processing may be done
outside an enclave, under an honest-but-curious assumption.

The addition of enclaves could help meet a similar set
of needs in this architecture as in ArchC. The needs are
illustrated in Figure 5 alongside the enclave arrangement
necessary for meeting each need. We describe ArchD specific
needs below in more detail:

N1D: Establishing bidirectional trust in one another. By
having each sensor check the measurement of the destination
sensor’s enclave during remote attestation, the sensor can
determine whether its provided input will be processed as
expected and without being leaked outside the enclave (e.g.,
to the owner of the enclave).® This forward-direction trust is
reflected as (la) in Figure 5. At the same time, if parts of the
spectrum measurement could be integrated with each sensor’s
enclave and verified by the recipient during attestation, it
is possible to ensure that crafted/dishonest inputs are not
contributed to the ongoing localization round. This reverse-
direction trust is reflected as (1b) in Figure 5.

N2D: Providing additional guarantees about the leader.
Although we wrote in Section III-A that we assume the
existence of a consensus protocol for the election of a leader
that cannot be gamed by an adversary, such leader elec-
tion schemes require rounds of communication that could
be sidestepped with the introduction of a trusted enclave.
A dedicated, central node hosting an enclave could rely on
a hardware random number generator to appoint a leader.
Alternatively, this dedicated enclave could itself be established
as the dedicated leader for ordering sensors, thus reducing the
complexity that each individual sensor must be provisioned
with when they must support the potential to be elected as
leader.

®No direct exfiltration can be performed. We consider side-channel vulner-
abilities and microarchitectural attacks that can lead to covert exfiltration in
Appendix B.

To fully meet need N1D, all sensors must host their own
enclaves. This enables bidirectional attestation between each
pair of parent and child sensors to ensure authenticity of the
child’s input and proper configuration of the parent’s enclave
for ingesting and processing inputs while preserving location
privacy.

In the presence of only honest-but-curious sensors, it may
be enough to partially meet need N1D, establishing a uni-
directional trust by each source of its respective destination
sensor one level up on the hierarchy. This also fulfills needs
N1 and N3. Non-leaf sensors will receive and process inputs
from other sensors. To preserve the location privacy of their
children, non-leaf sensors should only handle these inputs
within an enclave. Leaf sensors do not require enclaves of
their own, because they do not receive input (in that particular
localization round), and they are expected to supply the correct
particles to their parent sensors. For future rounds:

« If we fix certain sensors to always be leaves when chosen
for a localization round, enclaves are not required of
them. This may be potentially unfair to the designated
leaves and open them up to association attacks’ over
multiple rounds.

o If we allow prior leaves to be placed higher in the
hierarchy in a future ordering, they will process other
sensors’ inputs (a role that can only be fulfilled by hosting
an enclave). To allow such role agility, all sensors must
have enclave support, though their enclaves may remain
inactive in certain rounds.

To meet need N2, all sensors are again required to host their
own enclaves so as to validate the propagation of the fusion
result back down the ordering hierarchy. The alternative is to
either have each sensor establish a direct channel with the root,
or to pass control to the leader to distribute the fusion result;
either option would require additional attestations to establish
the necessary trust relationships.

To meet need N2D, it is unavoidable to introduce a new
node that will have a dedicated role, be it that of leader-
appointer or leader, but this node will take no part in the
localization workflow. This new node will host an enclave that
can be measured by each active sensor via remote attestation.
Although additional attestations become necessary as a result,
the cost could potentially be amortized over many localization
rounds as long as there is a way to verify the persistence of that
enclave. At the same time, the communication cost associated
with leader election schemes can be avoided.

Cost of Attestation To mitigate the cost of attestation
in ArchC, participants might allow attestation to carry-over
across rounds, as long as the enclave of the target has not
changed. In ArchD, allowing attestation carry-over across
rounds is not as effective. Unlike ArchC, where participants’
roles are unchanging, sensors in ArchD may take different
roles (leader, non-leaf, or leaf) in different rounds, assuming

7If a sensor always contributes an initial set of particles, a pattern may
appear when analyzing the entire set of localization results over an extended
period of time. This is of greater concern when the total number of participants
is small.

Algorithm 1: Particle Filter-based Localization: Main
function

Algorithm 2: Particle Filter-based Localization: Sub-
functions

1 Function main (treeHeight, servFraction, sensors,
latPrecis, longPrecis, leafParticleCount, pleRange):

2 for treeLevel = treeHeight, treeLevel ; 0; treeLevel— do

3 for sensor € sensors|treeLevel] do

4 if treeLevel == treeHeight then

5 sensor.particles =
leafInit(lea f ParticleCount,
sensor.position, ple Range)

6 end

7 else

8 ‘ sensor.particles =
receiveParticles(sensor.childl, sensor.child2)

9 end

10 sensor.particles =

updateParticles(sensor.particles,
servFraction[treeLevel], sensor.RS.S)

11 end

12 end

13 grid = (mazLat, minLat, maxLong, minLong) from

root.particles
14 while (maxzLat — minLat ; latPrecis) and
(maxLong — minLong ; longPrecis) do

15 rootParticles = partitionParticles(root Particles, grid)

16 recalculate grid from root.particles

17 end

18 estimate = (latitude, longitude) at center of rootParticles

19 return estimate

they are selected at all. Even if enclave operation could be con-
figured to match the sensor’s role in each round, the ordering
of sensors may change dramatically between rounds. Since
trust is neither symmetric nor transitive, any new parent/child
relation demands new attestation. One way to work around
this might be to designate, at random, some subset of the
sensors to attest the enclaves of all other participants in each
round. since both sensors and FC have a defined, unchanging
role in every round of localization. New attestations would be
required only by/of sensors newly selected to participate in the
next round. which may be all of the sensors in the worst case
(this sensor-turnover ratio could be bounded by a parameter).

V. FULL LOCALIZATION ALGORITHM

Localization begins at the bottom level of the tree, at
the leaves. and proceeds upward toward the root. Each
leaf sensor initializes a predetermined number of parti-
cles (Alg. 2, lines 1-12). Particles are quartets of form
(latitude,longitude, PLE, weight). Each particle has its
weight updated according to the leaf’s RSS (Alg. 2, lines 15—
28). As part of the update process, some portion of the particles
are designated as serving particles (the size of a sensor’s
serving particle set may be dependent on its position in the
tree), in which case they will be used to generate additional
new particles.

At all levels of the tree above the leaves (including at
the root), sensors receive particles from their two children
(Alg. 2, lines 13-14), which they combine. Each parent sensor
updates the weight of each particle in its combined particle set
according to its own RSS and performs resampling with any
designated serving particles.

Once the initial loop completes, it is the root’s responsibility
to use the final particle set to perform the final estimation

1 Function generateParticle (pos, pleRange):

2 init particle

3 select particle.lat and particle.lon uniformly at random from
within circle centered at pos

4 select uniformly at random from ple Range to set particle.ple

5 particle.weight = 1

6 return particle

7 Function leafInit (count, pos, pleRange):

8 init init Particles

9 for index = 0; index ; count, index++ do

10 | initParticles.append(generateParticle(pos, ple Range))

11 end

12 return initParticles

Function receiveParticles (childl, child2):
‘ return childl.particles U child2.particles
Function updateParticles (inputParticles, frac, RSS):
16 init output Particles
17 for particle € inputParticles do
18 | update particle.weight using RSS

—
w

n

19 end

20 servingParticles = (inputParticles.count * frac)
particles with greatest particle.weight

21 for particle € input Particles do

2 outputParticles.append(particle)

23 if particle € servingParticles then

24 newParticle = generateParticle(particle)

25 output Particles.append(new Particle)

26 end

27 end

28 return outputParticles

29 Function partitionParticles (rootParticles, grid):
30 split grid into regions = {gNW, gNE, gSW, gSE}
31 init count = {0, 0, 0, 0}

32 for particle € rootParticles do

33 for region € regions do

34 if particle.lat and particle.lon within region then
35 increment count|region.index|

36 regions|region.index].append(particle)

37 end

38 end

39 end

40 return regions(index of max element in count]

of the target transmitter’s position. The root does this by
first determining the minimum and maximum latitude and
longitude values among all particles, using this to establish
a two-dimensional grid (Alg. 1, line 13). While the difference
between min and max latitude and between min and max
longitude are greater than a predetermined goal precision, the
root partitions the set of particles into quadrants: NW, NE,
SW, and SE (Alg. 2, line 30). The root places each of its
particles into the respective quadrant. Once all particles are
placed, the root selects the quadrant with the highest particle
density to be the refined particle set (Alg. 2, lines 29-40).
This process is recursively repeated until the goal precision
is reached, at which time the root estimates the transmitter to
be located at the center of the grid containing the remaining
particles (Alg. 1, line 18).

VI. IMPLEMENTATION

We implement the particle filter-based localization algo-
rithm presented in Section A and use it to reason about
both the centralized and decentralized architectures. We first
describe the partitioning of the simulator code done to con-

Micro-benchmark Macro-benchmark: Macro-benchmark:

Particles Height
” 50t Z3A SGX " 500 | =20 SGX ” 1000 ZA SGX
T EEE Normal T EER Normal e EEE Normal
o o o
O o o
0) CD CU
] 0 0
E 25 E 250 E 500
£ £ £
<D d) Q
£ £ £
[- [
0 5k 10k 0 5k o 3
Number of particles Number of particles Height of the tree
(a) (b) (©
Micro-benchmark Macro-benchmark: Macro-benchmark:
Particles 1e7 Height
500000 (=3 TEE 1020000 |=z23 TEE 1.0- |z TEE
w w w
e EEER REE T EEE REE e EEE REE
o o o
g g % g
]] 0
'E 250000 ‘€ 510000 €05
£ £ £
d) Q Q
£ £ £
) :) %
0 5k 10k 20k 0 5k 10k 20k 0.0 3 4
Number of particles Number of particles Height of the tree
() © ®

Fig. 6: Results are shown for performance testing: (a) and (d) show the micro-benchmark on (process_measurement)
function with varying particle counts, averaged over 100 runs for SGX and TrustZone respectively. (b) and (e) show the
macro-benchmark with different particle counts for SGX and TrustZone respectively. (c) and (f) show the macro-benchmark

with different heights for SGX and TrustZone respectively. All macro-benchmarks are averaged over 20 runs.

struct an enclave component, followed by the implementation
challenges specific to each choice of TEE.

A. Enclave

For a cross-platform application, an obvious choice could

be using a hardware-agnostic SDK, such as OpenEnclave [33].
However, we found the project is not mature and seems to lack
support for various platforms. Instead, we used the Intel SGX
SDK for Intel and OP-TEE® for ARM platforms. As both of
these projects provide a call interface to invoke the enclave, we
choose the process_measurement function as the main
focus of enclave porting, as it provides the simulation logic for
the processing of input particles by each sensor. We also placed
several helper functions, such as normal distribution sampler,
latitude/longitude and bearing/distance coordinates converter,
etc., in the enclave to aid the measurements process. The
particles supplied by the currently simulated sensor’s children
are passed into the function as a parameter to simulate the
actual sending of child inputs, though pre-combined, across
the enclave boundary into the parent’s enclave.
SGX-specific implementation details Intel SGX SDK lacks
support for C++’s random, used to sample from a normal
distribution. To work around this, we implement a cus-
tom function for sampling from a normal distribution using
sgx_read_rand. Intel SGX SDK does not support C++ vectors
across the enclave boundary. To this end, we flatten vectors
into arrays while passing data to enclaves and vice versa.

8https://www.op-tee.org

TrustZone-specific implementation details: Similar to the SGX
SDK, the programming environment in the TA is also re-
stricted. We implement our own function for sampling from a
normal distribution using TEE_GenerateRandom. As OP-
TEE does not provide a math library, we statically link the
£d1ibm’ library against our application. Due to limited secure
memory, OP-TEE restricts the TA memory size. However, for
our application we modified the OP-TEE core to increase the
maximum available memory for our TA.

VII. EVALUATION

Platform We conduct the evaluation of our SGX implemen-
tation on an HP machine with an Intel Skylake quad-core
CPU supporting SGXv1 and 8 GB of memory. The machine
is equipped with Ubuntu v18.04 and Intel SGX SDK v2.4.
For TrustZone, we used the Hisilicon HiKey 620 with an
ARM Cortex A53 octa-core CPU, 2GB memory, and Hisilicon
TrustedCore as the TEE. Our TA is built for OP-TEE v3.13.
In our experiments, we feed real spectral measurements to
our simulation. We take as many RSS measurements (with
the same fixed transmitter as the target) as there are sen-
sors; each sensor in our simulation is assigned one of these
measurements. When taking these measurements, we also
record the GPS coordinates of the collection point; each sensor
assumes as its own the location coordinates corresponding to
its prescribed RSS measurement. The evaluation results are
available in Figure 6. We discuss the results in the following
subsections.

9Freely Distributable LIBM,
https://www.netlib.org/fdlibm/.

available at

Micro-benchmark For micro-benchmarking, we vary the num-
ber of particles initially generated by each leaf sensor (5,000,
10,000, and 20,000) and measure the average execution time of
process_measurement function over 100 executions. In
all cases, we observe that the enclave version of the simulation
is slower than the normal C++ simulation. We observe that
doubling particle count from 10,000 to 20,000: the average
execution time increase from 8.27 ms to 15.9 ms (1.92x
increase) for SGX (6a). Similarly for TrustZone (6d), the
average execution time increase from 174.45 ms to 272.8
ms (1.56x increase). For TrustZone, the majority of the high
overhead comes from the session setup with the trusted world.
Macro-benchmark We perform macro-benchmarking to mea-
sure the performance overhead across the entire simula-
tion(from initial leaf particle generation to final transmitter
location estimation). Our simulation does not capture actual
networking overhead incurred from communication between
enclaves, but we make a best effort to simulate the complexity
of passing inputs into and outputs out of the enclave by each
participating sensor. In this set of experiments, we observe
the effects of varying the height of the tree (which determines
the number of sensors that participate in a given localization
round) and the initial leaf-generated particle count. Results are
averaged over 20 complete simulation runs.

Similar to microbenchmarks, we vary the particle count
from 5000 to 20,000. When varying the number of particles,
for SGX (6b), we observe that simulation time roughly doubles
as the number of particles increases; this behavior is the
same for both normal and SGX variants. Average overhead is
increased from 29.4 ms to 109.6 ms, when varying particles
count from 10,000 to 20,000 particles. In contrast, for the
same configuration, in TrustZone (6e) overhead increases from
804.2 ms to 807.6 ms (1.01x increase). The low increase in
the overhead is because the overhead of the call from the
non-secure world to the secure world (also known as Secuure
Monitor Call (SMC)) overshadows the overhead due to particle
count increase.

When varying the tree height (Figure 6(c)), we observe
that simulation time roughly doubles as the height of the tree
increases by 1, for both SGX and TrustZone. This is expected
since increasing tree height effectively doubles the number
of participating sensors. For SGX (6c), the average overhead
is increased from 53.2 ms for tree height of 3; to 259.1 ms
for tree height of 5 (7.9x increase). For TrustZone (6f) the
simulation time is increased from 2.7 seconds on average with
tree height of 3 to 9.5 seconds on average with a tree height of
5 (3.51x increase). Here we see that the percentage overhead
increases alongside the increase in tree height, but only by a
small amount, while the raw performance hit remains within
expectations.

In all cases, we observe a higher execution time compared
to native execution. However, the overall overhead is consid-
erably lower compared to cryptographic techniques, making it
feasible for real systems. With TrustZone the higher overhead
can be mitigated using various techniques such as pseudo
TAs, persistent TA sessions, and Scalable Vector Extension
v2 (SVE2). However, our evaluation suggests that the particle

filters with TrustZone can benefit from using an SGX node in
the cluster via the cloud.

VIII. CONCLUSION

The naive sharing of information in cooperative spectrum
sensing allows a compromised participant to potentially un-
cover the sensitive locations of all sensors performing such
monitoring. In this paper, we design and implement a secure
particle filter method for localization based on enclaves. In
effect, we illustrate how we can dramatically improve the pro-
tections for participants in collaborative wireless applications.
To our best knowledge, this is the first work demonstrating
privacy-preserving attestable localization in a multi-party en-
vironment with reasonable overhead.

IX. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable com-
ments. This work was supported in part by NSF under Grants
NSF CNS-1642973 and NSF CNS-1815883. This material is
also based on research sponsored by AFRL under contract
number AFRL FA9550-19-1-0169. Any opinions, findings,
and conclusions, or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of these sponsors.

REFERENCES

[1] K. Kim, C. H. Kim, J. J. Rhee, X. Yu, H. Chen, D. J. Tian, and
B. Lee, “Vessels: Efficient and scalable deep learning prediction on
trusted processors,” in Proceedings of the 11th ACM Symposium on
Cloud Computing, ser. SoCC *20. New York, NY, USA: Association
for Computing Machinery, 2020.

[2] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “Vc3: Trustworthy data analytics in the cloud
using sgx,” in 2015 IEEE Symposium on Security and Privacy, 2015,
pp. 38-54.

[3] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware,” in International Conference on
Learning Representations, 2019.

[4] C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure database
using sgx,” in 2018 IEEE Symposium on Security and Privacy (SP),
2018, pp. 264-278.

[5] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix: An
efficient oblivious search index,” in 2018 IEEE Symposium on Security
and Privacy (SP), 2018, pp. 279-296.

[6] R.Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia, and
C. Fetzer, “esos: Policy enhanced secure object store,” in Proceedings of
the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April
23-26, 2018, ser. EuroSys "18. Association for Computing Machinery,
2018.

[7]1 T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh, “Shieldstore: Shielded in-
memory key-value storage with sgx,” in Proceedings of the Fourteenth
EuroSys Conference 2019, ser. EuroSys ’19. New York, NY, USA:
Association for Computing Machinery, 2019.

[8] S. Eskandarian and M. Zaharia, “Oblidb: Oblivious query processing
for secure databases,” Proc. VLDB Endow., vol. 13, no. 2, p. 169-183,
Oct. 2019.

[9] T. Alhmiedat, A. A. Taleb, and M. Bsoul, “A Study on Threats

Detection and Tracking Systems for Military Applications using WSNs,”

International Journal of Computer Applications, vol. 40, no. 15, pp. 12—

18, Feb. 2012.

J.Ma, G. Y. Li, and B. H. Juang, “Signal Processing in Cognitive Radio,”

Proceedings of the IEEE, vol. 97, no. 5, pp. 805-823, May 2009.

R. N. Handcock, D. L. Swain, G. J. Bishop-Hurley, K. P. Patison,

T. Wark, P. Valencia, P. Corke, and C. J. O’Neill, “Monitoring Ani-

mal Behaviour and Environmental Interactions Using Wireless Sensor

Networks, GPS Collars and Satellite Remote Sensing,” Sensors, vol. 9,

no. 5, pp. 3586-3603, May 2009.

(10]

[11]

[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

Intel Corporation, “Intel Software Guard Extensions for Linux OS,”
https://01.org/intel-softwareguard-eXtensions, 2018.

ARM, Ltd., “Building a Secure System using TrustZone Technology,”
ARM, Ltd., Tech. Rep., 2009.

T. Ward, J. I. Choi, K. Butler, J. M. Shea, P. Traynor, and T. Wong,
“Privacy Preserving Localization Using a Distributed Particle Filtering
Protocol,” in IEEE MILCOM, 2017.

S. S. Dias and M. G. S. Bruno, “Cooperative Target Tracking Using
Decentralized Particle Filtering and RSS Sensors,” IEEE Transactions
on Signal Processing, vol. 61, no. 14, Jul. 2013.

C. Morelli, M. Nicoli, V. Rampa, U. Spagnolini, and C. Alippi, “Particle
Filters for RSS-Based Localization in Wireless Sensor Networks: An
Experimental Study,” in /IEEE ICASSP, 2006.

T. Stoyanova, F. Kerasiotis, C. Antonopoulos, and G. Papadopoulos,
“Rss-based localization for wireless sensor networks in practice,” in
Comm. Sys., Networks, and Digital Sign (CSNDSP), 2014.

S. Tomic, M. Beko, R. Dinis, and J. P. Gomez, “Target Tracking
with Sensor Navigation Using Coupled RSS and AoA Measurements,”
Sensors (Basel), vol. 17, no. 11, p. 2690, 2017.

Z. Yang, Z. Zhou, and Y. Liu, “From RSSI to CSI: Indoor Localization
via Channel Response,” ACM CSUR, vol. 46, no. 2, Nov. 2013.

G. Wang and K. Yang, “A New Approach to Sensor Node Localization
Using RSS Measurements in Wireless Sensor Networks,” IEEE Trans-
actions on Wireless Communications, vol. 10, no. 5, May 2011.

M. B. Jamia, A. Koubda, and Y. Kayani, “EasyLoc: RSS-based Local-
ization Made Easy,” in RoboSense, 2012.

J. Shirahama and T. Ohtsuki, “RSS-Based Localization in Environments
with Different Path Loss Exponent for Each Link,” in JEEE VTC, 2008.
A. Robertson, S. Kompella, J. Molnar, F. Fu, M. Dillon, and D. Perkins,
“Distributed Transmitter Localization by Power Difference of Arrival
(PDOA) on a Network of GNU Radio Sensors,” Naval Research Labo-
ratory, Tech. Rep., Mar. 2015.

I. Abraham, D. Dolev, and J. Y. Halpern, “Distributed Protocols for
Leader Election: A Game-Theoretic Perspective,” in DISC, 2013.

B. Mood, D. Gupta, H. Carter, K. Butler, and P. Traynor, “Frigate: A
Validated, Extensible, and Efficient Compiler and Interpreter for Secure
Computation,” in /[EEE Euro S&P, 2016.

R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A. Reza-Sadeghi,
G. Scerri, and B. Warinschi, “Secure Multiparty Computation from
SGX,” in FC, 2017.

I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative Technology
for CPU Based Attestation and Sealing,” in HASP, 2013.

J. Wang, Y. Zhang, and Y. Jin, “Enabling Security-Enhanced Attestation
With Intel SGX for Remote Terminal and IoT,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 37, no. 1, 2018.

Z. Wang, Y. Zhuang, and Z. Yan, “Tz-mras: A remote attestation
scheme for the mobile terminal based on arm trustzone,” Security and
Communication Networks, vol. 2020, 2020.

Z. Ling, H. Yan, X. Shao, J. Luo, Y. Xu, B. Pearson, and X. Fu, “Secure
boot, trusted boot and remote attestation for arm trustzone-based iot
nodes,” Journal of Systems Architecture, vol. 119, p. 102240, 2021.

X. Luo, “Secure Cooperative Spectrum Sensing Strategy Based on
Reputation Mechanism for Cognitive Wireless Sensor Networks,” IEEE
Access, vol. 8, pp. 131361-131 369, 2020.

Z.Luo, S. Zhao, Z. Lu, J. Xu, and Y. E. Sagduyu, “When Attackers Meet
Al: Learning-empowered Attacks in Cooperative Spectrum Sensing,”
arXiv preprint arXiv:1905.01430, 2020.

“openenclave/openenclave: Sdk for developing enclaves,”
https://github.com/openenclave/openenclave, (Accessed on 06/10/2021).
S. Johnson, https://software.intel.com/en-us/articles/intel-sgx-and-side-
channels, Feb. 2018.

Y. Zhang, M. Zhao, T. Li, and H. Han, “Survey of Attacks and Defenses
against SGX,” in Proceedings of the IEEE 5th Information Technology
and Mechatronics Engineering Conference (ITOEC), 2020.

A. Nilsson, P. N. Bideh, and J. Brorsson, “A Survey of Published Attacks
on Intel SGX,” arXiv preprint arXiv:2006.13598, 2020.

Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks: Determin-
istic Side Channels for Untrusted Operating Systems,” in Proceedings
of the IEEE Symposium on Security and Privacy (IEEE S&P), 2015.
M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware Guard Extension: Using SGX to Conceal Cache Attacks,”
in DIMVA, 2017.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

F. Brasser, U. Miiller, A. Dmit rienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software Grand Exposure: SGX Cache Attacks Are
Practical,” in WOOT, 2017.

W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky Cauldron on the Dark Land:
Understanding Memory Side-Channel Hazards in SGX,” in ACM CCS,
2017.

J. Wichelmann, A. Moghimi, T. Eisenbarth, and B. Sunar, “MicroWalk:
A Framework for Finding Side Channels in Binaries,” in ACSAC, 2018.
M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading Kernel Memory from User Space,” in Proceedings
of the 27th USENIX Security Symposium, 2018.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre: Exploiting Speculative Execution,” in Proceedings of the 40th
IEEE Symposium on Security and Privacy (IEEE S&P), 2019.

J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin,
Y. Yuval, B. Sunar, D. Gruss, and F. Piessens, “LVI: Hijacking Transient
Execution through Microarchitectural Load Value Injection,” To appear
at the IEEE Symposium on Security and Privacy (IEEE S&P), 2020.
J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-
of-Order Execution,” in Proceedings of the 27th USENIX Security
Symposium, 2018.

M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella, and
D. Gruss, “PLATYPUS: Software-based Power Side-Channel Attacks on
x86,” in IEEE Symposium on Security and Privacy (SP), 2020.

K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based Fault Injection Attacks against
Intel SGX.,” in Proceedings of the 41st IEEE Symposium on Security and
Privacy (IEEE S&P), 2020.

J. Beekman, “On the recent side-channel attacks on Intel SGX,”
https://jbeekman.nl/blog/2017/03/sgx-side-channel-attacks/ ~ Accessed,
May 2017.

M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs,” in NDSS, 2017.
J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim,
“SGX-Shield: Enabling Address Space Layout Randomization for SGX
Programs,” in NDSS, 2017.

S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “ROTE: Rollback Protection for Trusted
Execution,” in Proceedings of the 26th USENIX Security Symposium,
2017.

V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal Hardware
Extensions for Strong Software Isolation,” in USENIX Security Sympo-
sium, 2016.

Keystone Enclave, “Keystone: An Open Framework for Architecting
Trusted Execution Environments,” https://keystone-enclave.org, 2018.

APPENDIX A
SIMULATOR IMPLEMENTATION AND TUNABLE
PARAMETERS

a) Tunable parameters: The simulator accepts the fol-

lowing parameters, inheriting the default values selected by
Ward et al. [14].

Tree height determines the number of sensors that are
accepted for a certain round. With height h, a binary tree
contains 2" — 1 nodes. For example, a binary tree height
of 4 permits 15 sensors to participate. Out of a larger
set of available sensors, a subset of sensors is chosen
to populate the tree according to the sensors’ Signal-to-
Noise Ratio (SNR).

Farticle count sets the number of particles generated
uniformly at random by leaf sensors in the tree hierarchy.
Seed particle fraction is the fraction of particles to keep
when resampling (0.1 by default).

Resampling fraction is the ratio of new samples that will
be drawn to the number of input samples (1 by default).
Transmitter location is the transmitter’s latitude, longi-
tude pair, against which the computed estimate can be
compared.

Max particle distance is the maximum distance away
from a leaf that a particle it generates may be (75 km
by default).

Path Loss Exponent (PLE) is uniformly selected between
3 and 4.5 for particles generated by leaf sensors. Actual
PLE varies depending on the localization target; we
calculate the actual PLE for our simulation to be 3.2.

b) Simulation steps: The simulator begins by taking in
a vector of PLEs (chosen uniformly from the PLE selection
range to approximate the actual PLE) and a vector of sig-
nal power measurements (indexed by receiver and frequency
band). A tree hierarchy is established, with sensors sorted
by their signal power measurements (sensors with higher
SNR occupy higher levels of the tree). The following steps
correspond to those first presented in Section A.

1) Particle generation at leaf sensors. We use a loop to
generate particles uniformly at random; we loop as
many times as there are simulated leaves. A particle is
implemented as a vector of four floats, and a sensor’s
particle set is implemented as a vector of particles. Each
leaf’s vector of particles is itself stored in a vector
indexed by leaf ID.

Particle processing. We set aside a dedicated function for
resampling particles (process_measurement); the
function gets called once for each sensor that populates
the tree. On each invocation, the function has access
to the location and RSS measurement of one particular
sensor. The function (i) calculates expected signal value
when not considering noise; (ii) calculates the proba-
bility density function (PDF) using the expected signal
value and the sensor’s RSS measurement; and (iii) runs
the particle filter, updating the weights of each particle
while using any “serving” particles to generate new
ones. After completing these three tasks, the function
returns the set of newly resampled particles to the main
simulation function, which stores the returned set of
particles in a vector.

Merging particle sets. Upon returning, and unless the
current sensor is the root, pairs of particle sets are
combined in preparation for the simulation of compu-
tations at the next level up in the tree (in a binary tree
arrangement, a parent sensor receives particles from its
two children as input). The loop will repeat and again
call process_measurement.

Recursive particle grid partitioning. Output is prepared
by first setting up 2-D grid boundaries using the max
particle distance and the locations of the sensors furthest
out. Particles from the final particle set produced by the
root are overlaid onto this grid, and the region with the
most particles is selected. Grid partitioning is recursive
and continues in a loop until the desired precision is
reached, at which point, the center of the final region is

2)

3)

4)

10

ascertained as the transmitter’s location.

APPENDIX B
ATTACKS AGAINST ENCLAVES

SGX has proven to be a controversial mechanism for
enforcing protection, particularly since Intel specifically made
the decision that side channels were outside of the threat
model and that developers were responsible for preventing side
channel attacks [34]. As a result of this decision, a number
of attacks have been demonstrated against SGX. We provide
a sampling of the major attacks against SGX below. For a
more complete characterization of all the attacks demonstrated
against SGX and the corresponding mitigations, refer to work
by Zhang et al. [35] and Nilsson et al. [36].

Controlled-channel attacks [37] use memory access patterns
to exfiltrate sensitive information from secure enclaves. Cache-
based side-channel attacks [38], [39] have also been effectively
deployed against SGX. Meanwhile, memory side channel
hazards were discovered by Wang et al. [40] that affect
system elements ranging from TLBs to DRAM modules. Other
side-channel vulnerabilities [41] are also found within the
Integrated Performance Primitives (IPP) cryptographic library
used by Intel SGX SDK. More recently, microarchitectural
attacks have been demonstrated to work on SGX enclaves,
notably the high-profile Meltdown [42], Spectre [43], and
LVI [44] attacks, while Foreshadow [45] attacks extract the
attestation key from enclaves thus breaking SGX remote at-
testation. The novel PLATYPUS [46] attack demonstrated the
ability of an attacker to remotely collect power consumption
information via Intel’s Running Average Power Limit (RAPL)
interface, where previous power analysis attacks required
physical access. Alternatively, active power-based attacks such
as Plundervolt [47] can be remotely mounted against SGX
enclaves to inject faults and reconstruct cryptographic keys.
The net result of this critical examination of SGX is that side
channels appear to represent a substantial attack surface.

However, defenses against side channel attacks have been
developed by the academic community and by Intel, whose
recent version of the SGX SDK introduces a number of
countermeasures [48]. Intel continues to work closely with
security researchers to release microcode patches and updates
to the Intel SGX SDK as new vulnerabilities surface. Within
the academic literature, proposals have included T-SGX [49],
which leverages Intel TSX instructions to hide the enclave
page fault from the untrusted operating system, defending
against controlled-channel attacks. SGX-Shield [50] enables
ASLR for enclave memory space, defending the enclave code
against exploitations, while ROTE [51] leverages multiple
SGX machines in a distributed environment to provide a
monotonic counter and prevent rollback attacks against en-
claves. Existing work has proposed architecture-level mitiga-
tions for cache-based attacks. Sanctum [52] proposes a RISC
V-based ISA that mitigates side channels while enforcing
enclave guarantees; a RISC V-based, open-source alternative
to Sanctum is provided by Keystone [53].

