
Fuzzing SGX Enclaves via Host Program Mutations

Arslan Khan, Muqi Zou, Kyungtae Kim, Dongyan Xu, Antonio Bianchi, Dave (Jing) Tian
{khan253, zou116, kim1798, dxu, antoniob, daveti}@purdue.edu

Purdue University

Abstract—Intel Software Guard eXtension (SGX) is the
cornerstone of Confidential Computing, enabling runtime
code and data integrity and confidentiality via enclaves.
Unfortunately, memory-unsafe and type-unsafe programming
languages, such as C/C++, are commonly used to develop
enclave implementations. As a result, a memory corruption
or a data race within enclaves could lead to different attacks
against the enclaves, such as Return-Of-Programming (ROP)
and data leakage, breaking the hardware security guarantee
provided by SGX. To automatically identify these issues in
existing enclave implementations, in this paper, we propose
FUZZSGX, an input and program mutation-based fuzzer
for Intel SGX enclave implementations. FUZZSGX provides
an enclave fuzzing runtime, FUZZSGX RUNTIME, a drop-in
library for Intel SGX SDK, enabling code coverage and
sanitization within enclaves. To explore the host app-enclave
boundary, FUZZSGX conducts static analysis and symbolic
execution on existing host apps and enclave implementa-
tions to generate promising fuzzing programs, fuzzing both
ECALLs and OCALLs. We evaluate FUZZSGX using 30
popular SGX applications and enclave implementations and
find 93 bugs among these SGX projects, including data races,
null pointer dereferences, out-of-bound accesses, division-by-
zero, etc. FUZZSGX achieves 3.2x higher code coverage and
finds 48.2% more bugs by directly targeting the host app-
enclave boundary by using program mutations, compared to
state-of-the-art fuzzers.

1. Introduction

Intel Software Guard eXtension (SGX) is a microcode
and hardware extension to Intel CPUs after Skylake [1]
providing runtime memory integrity and confidentiality via
CPU-protected memory regions called enclaves. Traditional
programs can be partitioned into a trusted part, Enclave
and an untrusted part, Host App. While the host app can
be compromised and goes rogue, the enclave is expected
to be secure. Since its introduction, SGX has been used to
secure data analytics and machine learning applications [2],
[3], [4], databases [5], [6], [7], [8], [9], filesystems [10],
[11], multi-party computation [12], and others [13], [14],
[15]. SGX has become the cornerstone of Confidential
Computing [16], [17] allowing users to enjoy the power
of cloud computing without trusting cloud vendors other
than Intel CPUs.

Unfortunately, SGX applications and enclave imple-
mentations are commonly written in memory-unsafe and
type-unsafe programming languages such as C/C++, par-
tially due to the wide adoption of the Intel SGX SDK [18]
and C/C++ in legacy applications. Furthermore, SGX

applications can employ multi-threading to achieve the
benefits of multiple cores, which leaves SGX enclaves
prone to race conditions, as C/C++ are not inherently
thread-safe languages. The situation is worsened by the
strong threat model of enclaves; i.e., only the enclave is
considered the trusted computing base (TCB) whereas
both the Operating System (OS) and the host app can be
potentially malicious. As a result, enclaves need to secure
themselves against every possible input from outside the
enclaves. SGX developers often misplace the trust in the
host apps and sanitize inputs inside the host app, instead
of the enclave, leaving enclaves susceptible to malicious
inputs. A memory corruption bug or a data race within
enclaves could lead to different attacks against enclaves,
including Return-Oriented-Programming (ROP) [19], [20]
and secret data leakage [21], [22], defeating the security
guarantees enforced by SGX.

To detect these vulnerabilities within enclave imple-
mentations, state-of-the-art solutions use different program
analysis techniques and focus on different aspects of
SGX applications. TeeRex [23] uses symbolic execution
to analyze binary enclaves but faces the path explosion
when investigating complex enclaves. Emilia [24] leverages
fuzzing to detect Iago vulnerabilities [25] targeting the
syscall-to-enclave boundary. However, Emilia fails to find
memory corruption vulnerabilities within enclaves.

To find memory corruption vulnerabilities, SGXFuzz
[26] uses code coverage-guided fuzzing SGX enclave
binaries built for the hardware mode. However, as advised
by Intel, binary enclaves should run in the hardware mode
and exercise remote attestation to ensure that the enclave
is running on a genuine Intel processor [27]. Due to this
limitation, only the subset of enclaves running without
remote attestation can be used for enclave binaries (See
section 7). Moreover, due to the nature of binary fuzzing,
SGXFuzz could not leverage source-level instrumentation
and uses methods such as Intel Process Trace (PT) [28] to
extract the code coverage from inside the enclave, resulting
in up to a 90% performance degradation in fuzzing
throughput [29] and very limited program sanitizations [30],
[31]. Lastly, SGXFuzz does not support simultaneously
fuzzing host apps and enclaves to fuzz complete SGX
applications, causing it to miss bugs resulting from the
integration of the host app and enclaves.

Based on our observations, we note that we still need a
comprehensive fuzzing solution for Intel SGX applications
and propose FUZZSGX, a coverage-guided input and
program mutation-based fuzzer for Intel SGX enclave im-
plementations. FUZZSGX provides FUZZSGX RUNTIME,
a library OS (libOS) for the Intel SGX SDK enabling high-
throughput coverage feedback, address sanitization, and

thread sanitization automatically. FUZZSGX fuzzes both
user-host app boundary and host app-enclave boundary by
conducting static analyses and symbolic execution on the
host app and enclave implementations to generate programs
directly fuzzing ECALLs and OCALLs of an enclave.

We evaluate FUZZSGX on 30 SGX applications and
enclave implementations and find 93 previously unknown
bugs within these SGX projects. In summary, the contri-
butions of this paper are as follows:

• We design and implement FUZZSGX RUNTIME, a
novel mechanism to extract code coverage from
enclaves using a specialized libOS for Intel SGX SDK,
enabling code coverage reporting, address sanitization,
and thread sanitization within enclaves.

• We design and implement FUZZSGX, an orches-
trated SGX fuzzer targeting enclave implementa-
tions. FUZZSGX uses static analysis and symbolic
execution to reason about internal dependencies of
ECALLs and their arguments to generate promising
host fuzzing programs.

• We evaluate FUZZSGX using 30 SGX applications
and enclave implementations and find 93 previously
unknown bugs among these projects. FUZZSGX
achieves 3.2x higher code coverage and finds 48.2%
more crashes compared to the state-of-the-art fuzzers,
such as SGXFuzz [26].

We have reported all our findings to the respective
parties. The source code for FUZZSGX is available at:
https://github.com/purseclab/FuzzSGX.

2. Background

In this section, we first introduce the high-level tech-
nical concepts of Intel SGX and the Intel SGX SDK.
Then, we survey existing vulnerability discovery solutions
for SGX enclave implementations to motivate our work.
Finally, we present the security model we consider in the
paper.

2.1. Intel SGX

Intel SGX [32] enables userspace software to create
isolated execution environments (i.e. enclaves), running
in a dedicated processor mode called SGX mode. These
enclaves are created from the Enclave Page Cache (EPC),
a physical memory region reserved by the CPU during
system boot-up. The code and data inside an enclave
are shielded from the rest of the system, including the
application creating that enclave, the operating system,
and any other software, regardless of the privilege level in
which it runs. To use SGX, userspace software, which we
will refer to as the "Host App", asks the kernel to create an
enclave within its own address space with provided code
and data.

Figure 1 shows the memory map of an SGX application
with its enclave loaded within its address space. The
enclave is compiled as a shared object signed by the
corresponding vendor. The Intel SGX kernel driver [18]
uses the EADD instruction to add this shared object
to the enclave memory. Furthermore, it measures the
enclave code and data for checking their integrity using the
EEXTEND instruction. EEXTEND stores this intermediate

0xff000000
00000000

0xffffffff
ffffffff Kernel

Space

Text

Data

BSS

0x00000000
00000000

User
Space

enclave.signed.so

libc,libm,libdl

libsgx_urts.so

libsgx_trts.so

Code

Data

EENTER/ERESUME

EEXIT

Interrupt/
Exception

AEX

Figure 1: Address layout of an SGX application. The
host app can load an enclave into its address space
using libsgx_urts.so and the SGX kernel driver. Once
the enclave is initialized, the host app can only enter
the enclave using the EENTER instruction. Similarly, all
exits from enclaves must be explicit, using the EEXIT
instruction.

measurement in the MRENCLAVE register. Finally, the
driver executes the EINIT instruction completing the ini-
tialization process. EINIT finalizes the verification process
by comparing the signature in the SIGSTRUCT certificate
to the measurement in the MRENCLAVE register. If the
enclave passes its integrity checks, the enclave’s init status
is set to true, making it available for use by the host app.

To enter the enclave, the host app needs to execute the
EENTER SGX instruction, which switches the CPU from
user mode to enclave mode. Inside an enclave, only ring-3
instructions are allowed, therefore to achieve any ring-0
functionality enclaves must collaborate with host apps. To
exit the enclave synchronously, the enclave needs to execute
the EEXIT instruction, switching the CPU back to user
mode. While the CPU is in enclave mode, any interrupts
and exceptions result in Asynchronous Enclave Exits
(AEX). The host app can resume the interrupted enclave
execution by reentering the enclave via the ERESUME
instruction.

To abstract the low-level SGX mechanics, Intel SGX
SDK [18] provides a mechanism to define the interface
between the enclave and the host app using a C-like
language called Enclave Description Language (EDL).
The EDL file of an enclave defines both entry functions
from the host app to the enclave (ECALLs) and func-
tions provided by the host app but callable by enclave
(OCALLs). Furthermore, the SDK provides a runtime
for SGX applications to provide common functionalities,
such as transition routines between the host app and
the enclave, cryptographic functions, etc. Due to the
partitioned nature of SGX applications, the runtime is
also split into two libraries: the Untrusted Runtime System
(URTS) and the Trusted Runtime System (TRTS). The
URTS and the TRTS are linked to the app and enclave
respectively as shown in Figure 1. The URTS provides
app functionality to manage the enclave lifecycle and
utilize enclave functionalities, whereas the TRTS is used
to validate the input from the URTS and provides a trusted
C library to aid in enclave development.

2

https://github.com/purseclab/FuzzSGX

2.2. Security Model

The trust model of an enclave implementation in-
cludes Intel SGX-enabled CPUs and the code running
within the enclave. Depending on the enclave development
environment, code within the enclave contains both the
trusted runtimes provided by an SDK and other trusted
libraries linked together. For instance, a crypto-related
enclave implementation developed using the Intel SGX
SDK consists of not only the business logic but also the
TRTS and the SGX crypto library. Intel SGX also provides
provisions to verify if the desired enclave implementation
is running on a genuine Intel SGX CPU.

The threat model of SGX assumes malice from all the
possible hardware components other than the CPU and all
the available firmware and software other than the code
within the enclave, including e.g., host app, OS, hypervisor,
etc. While we do not consider Denial-of-Service (DoS)
attacks from the system software, e.g., the OS refused to
load an enclave, our threat model includes DoS attacks
against enclaves during runtime via memory corruptions.
Moreover, we consider various attacks that can be achieved
via memory corruption within enclaves, such as ROP and
data leakage.

3. Enclave Fuzzing Challenges

Fuzzers work by mutating program state (input and
code) and inferring any changes seen in the code execution
paths to quantify if the mutation was helpful. However,
the SGX model poses the following Runtime Challenges
(RC):

• RC1: Limited Resources. SGX enclaves provide a
limited amount of resources. Most SGX implementa-
tions only provide 128MB of EPC which is shared
globally among all enclaves in the system. Since
fuzzers run many instances of the target programs, a
high-throughput fuzzer would quickly run out of this
memory budget.

• RC2: Unavailable OS Services. Enclaves are unable
to utilize any operating system services such as system
calls. As existing fuzzing solutions, like AFL [33],
are highly dependent on OS services, they cannot be
applied to SGX out of the box.

• RC3: No Code Coverage Export. As the primary pur-
pose of SGX application partitioning is to hide
information, existing fuzzing solutions are not able
to see any updates from inside the enclave.

• RC4: Missing Sanitizers. Fuzzers rely on program
sanitization to find common spatial and temporal bugs.
Due to RC1 and RC2, existing sanitizers cannot work
within enclaves.

A naive solution to these challenges could be the strat-
egy adopted by Intel SGX-Fuzzer [34], i.e. using the fuzzer
and program sanitization on the host application while
considering the enclave as a black box. Such configuration
can effectively find bugs in the host apps, however, this
approach fails at effectively fuzzing enclaves and struggles
to find bugs in the enclave as the fuzzer is not able to learn
the code execution changes inside the enclave. While bugs
in host apps are a threat, the SGX threat model already
assumes the host app is untrusted. Hence, it makes more

sense to fuzz the app-enclave interface directly, instead
of the app itself. Therefore, a fuzzer unaware of the SGX
threat model may spend a lot of time exploring the host
app whereas the real target is the enclave. Hence, efficient
fuzzing becomes highly dependent on the host app. This
cohesion between the host app and enclave can result in
the following challenges for fuzzing:

• FC1: Deep Code Paths. ECALLs could be hidden
under the deep paths of the host app code. As a
result, existing fuzzers could spend hours of mutation
to find inputs that reach ECALL invocation sites.

• FC2: Unused ECALLs. As mentioned before en-
claves can provide multiple ECALLs, however, a host
app might not require all of these ECALLs, making
it impossible for fuzzers to find bugs in the unused
ECALLs.

• FC3: Limited ECALL Input and OCALL Output
Coverage. To uncover Iago [25] and COIN [35]
vulnerabilities, fuzzers should be able to mutate the
ECALL inputs and OCALL outputs. However, a host
app might sanitize the inputs in such a manner that it
is not possible to invoke ECALLs with arbitrary inputs
by merely mutating inputs at the user interface, i.e. the
command line arguments or standard input. Similarly,
host apps can have similar sanitization on the output
of OCALLs. Although this sanitization works for
the specific host app and enclave combination, this
misplaced sanitization goes against the SGX threat
model. Enclaves are entirely responsible for input
validation for all inputs they receive, as these inputs
come from the untrusted runtime. Hence, such host
app sanitization hinders the bug-finding capabilities
of existing fuzzers.

• FC4 :Unavailable Host Apps. When enclave imple-
mentations are used as secure libraries. Developers
might not provide a host app at all and provide
enclaves only to be used as a secure library ren-
dering normal fuzzer futile without a host program.
Furthermore, a host app could be incompatible with
C/C++ program fuzzers. For instance, Signal Enclave
[36] is written in C/C++ while the host app is written
in Java, making it incompatible with C/C++ fuzzers.

4. Design

In this section, we discuss the design of
FUZZSGX RUNTIME and show how it can be used
to extract coverage information and enable sanitization
from within enclaves. Next, we consider the design of
FUZZSGX and show how FUZZSGX can tackle the
fuzzing challenges described in Section 3.

4.1. FUZZSGX RUNTIME.

Coverage Reporting Code coverage-guided fuzzers ex-
tract the code coverage information by assigning distinct
identifiers to basic blocks and instrumenting each basic
block, such that every jump between basic blocks is
reported to the fuzzer. This instrumented code uses OS
services such as IPC to communicate this information
to the fuzzer. Furthermore, to help find bugs such as
stack overflows, buffer overflows, etc., target programs

3

Shim layer (trusted)

enclave.so libsgx_trts.so

Enclave

Host OS

: normal data flow : cov/san data flow

Shim layer (untrusted)

libsgx_urts.so app

Host App

Fuzzer

Sanitizer Proxy libasan.so libtsan.so

Figure 2: FUZZSGX RUNTIME architecture. The enclave
is linked with the trusted part of the shim layer, while the
host app is linked with the untrusted part.

are commonly instrumented with sanitizing code, which
also depends on OS services. Since these mechanisms
are not available in enclaves, existing approaches to code
coverage measurement and bug detection do not work with
SGX programs.

To overcome this limitation, a naive solution could be
to use existing libOS [37], [38] approaches. However, these
projects are designed to run userspace applications inside
SGX enclaves, hence, they do not work well with SGX-
aware applications. Furthermore, these frameworks result
in high overhead, preventing high throughput execution of
test cases. Furthermore, this solution does not help with
RC1: Limited Resources. The high overhead and limited
resource availability in hardware mode makes fuzzing in
hardware mode using existing libOS infeasible.

To tackle this challenge, we propose using the simula-
tion mode for fuzzing SGX applications, hence tackling
RC1: Limited Resources. However, the simulation mode
does not solve RC2: Unavailable OS Services, as the
simulation mode only emulates SGX leaf instructions and
structures without impacting enclave implementations. As
a result, enclaves built for simulation mode still lack OS
services. Therefore, to emulate OS services, we implement
a shim layer that allows code coverage collection and
vulnerability detection within enclaves by resolving all of
the dependencies, such as system calls, required by the
instrumented code with minimal overhead. As shown in
Figure 2, the shim layer is split into trusted and untrusted
components. The trusted component links with the enclave
and the untrusted part links with the host app. The trusted
part emulates any OS services required by the sanitization
and code coverage. These services include Inter-process
communications (IPC), memory management, file handling,
etc. To get code coverage from all enclave components
(i.e., libsgx_trts.so and enclave.so), we place the shim
layer right at the bottom of the enclave and the host app.
Thanks to the division of the shim layer into the trusted
and the untrusted part, SGX-aware applications can use it
without any modification in the source code of either the
enclave or the host app. The shim layer emulates essential
OS services required for fuzzing and sanitization, with
a minimalist overhead, hence meeting RC2: Unavailable
OS Services challenge. Furthermore, current fuzzers, such
as AFL/AFL++, can extract code coverage from inside
enclaves using the shim layer, hence bypassing RC3: No
Code Coverage Export.
Sanitizers. The shim layer can emulate OS services inside
enclaves. However, even with these services, current sani-

tizers do not work with the partitioned SGX programs. For
instance, Thread Sanitizer (TSAN) [39] does not support
sanitization in statically linked libraries [40], whereas
enclaves are distributed as statically linked libraries making
them incompatible with TSAN. To tackle this problem,
we modify the address and thread sanitizer to make them
aware of SGX programs’ partitions.
Address Sanitizer (ASAN): ASAN finds spatial bugs by
tracking memory accesses and keeping the access metadata
in shadow memory [30]. We use the shim layer to export
the updates to the shadow memory and bug reports. Fur-
thermore, to enable direct updates of the shadow memory,
we use the simulation mode of Intel SGX SDK. For ASAN,
statically linked enclaves can utilize the initialization done
by the host app, hence the initialization routines run inside
the enclave without any modifications.
Thread Sanitizer (TSAN): TSAN finds temporal bugs by
conducting a Happens-Before [39] analysis. TSAN requires
information about memory accesses. Similar to ASAN, we
use the shim layer to export this information from within
the enclave. However, unlike ASAN, TSAN’s initialization
does not take care of statically-linked libraries, and re-
initializing the sanitizer from a statically-linked enclave
overwrites the previous initialization, crashing the sanitizer.
To adapt TSAN for enclaves we need to either modify
TSAN to have a different dynamically allocated metadata
or modify TSAN to merge the operations from the static
enclaves to the host app metadata. The first approach does
not scale, as for each statically linked library we would
have to allocate a new set of metadata and reinitialize
the sanitizer each time a new library is loaded. We used
the second design for our modified TSAN. Using the
customized SGX-aware sanitizers we meet RC4: Missing
Sanitizers.

4.2. FUZZSGX

To tackle the challenges mentioned in Section 3, we
design FUZZSGX as an enclave interface-aware fuzzing
suite. FUZZSGX uses traditional input mutation techniques
for fuzzing host apps. Moreover, FUZZSGX employs
program mutations to directly fuzz the host app-enclave
interface. In a nutshell, FUZZSGX uses the host app and
enclave source to synthesize custom-generated host apps to
connect with the target enclave and it feeds inputs targeting
the enclave functions through the generated host apps. At
the same time, FUZZSGX employs program mutation to
create mutated host apps that can efficiently fuzz the host
app-enclave interface. To create these mutated host apps,
FUZZSGX analyzes the source code of both the host app
and the enclave. Moreover, the source is used to instrument
the enclave to enable both code coverage feedback and the
usage of different sanitizers. Figure 3 shows the fuzzing
pipeline for FUZZSGX. We discuss each phase of the
pipeline in the following subsections.
Program Mutation. The fuzzing challenges (FC) pre-
sented in Section 3 cannot be tackled using only input
mutation. For instance, if a host app does not invoke an
ECALL, any duration of input mutation will not be able
to invoke this ECALL. To this end, FUZZSGX generates
custom host apps that exploit the SGX threat model to
find vulnerabilities where current fuzzers fail. For program
synthesis, FUZZSGX identifies enclave interfaces and input

4

Host
App

Enclave

Host
App App

Parser

EDL Program
Generator

AFL

Input
Mutation
Loop

Executor
(Simulation

Mode)

Enclave
Parser

Enclave
Interface

Identification

Order Dependence

Constant Extraction

Order Dependence

Constant Extraction

Symbolic Execution

Program
Dependency Inference Developer Generated Fuzzer Generated

FUZZSGX
RUNTIME

Program Mutation
Loop

Input Source Code

Figure 3: FUZZSGX pipeline. Using the enclave metadata and code FUZZSGX learns about the program to effectively
generate new test programs. FUZZSGX fuzzes the newly generated test programs using input mutation.

formats using static and symbolic program analysis. First,
it parses all interfaces to an enclave, such as ECALLs
and OCALLs, using the EDL and the enclave source files
(in the Enclave Interface Identification phase). Then, it
reasons about call dependencies for enclave entry functions,
as well as input values leading to in-depth enclave code
paths (Enclave Dependency Inference.). Based on this
information, it generates test cases for fuzzing (Program
Generation). Lastly, FUZZSGX fuzzes the newly generated
programs in a continuous loop (Main Fuzz Loop).
Enclave Interface Identification. Given an SGX enclave,
FUZZSGX needs to figure out its public interfaces. To
achieve this, FUZZSGX uses the Interface Parser, which
understands basic information concerning the enclave code.
Specifically, the interface parser parses the EDL files,
extracting ECALL/OCALL functions and EDL-specific
annotations, such as interface information about arguments,
specified within trusted and untrusted sections, respec-
tively. Furthermore, FUZZSGX also creates a database
of symbols from source code which is used to find any
type information in the EDL files and mutate the OCALL
definitions in place. The custom parsing extracts all inter-
faces provided by an enclave, regardless of any host app
dependency, hence, overcoming the FC2:Unused ECALLs
challenge. The interface parser saves the prototypes and
the type information as an Abstract Syntax Tree (AST).
FUZZSGX uses this information in the following program
analysis, program generation, and input mutation phases.
Program Dependency Inference. ECALLs can have mul-
tiple dependencies among each other. This phase is re-
sponsible for finding these dependencies between different
ECALLs. Existing work [41], [42] has tried to infer the
dependencies between different APIs for a library by
parsing users of that particular library. However, unlike
normal libraries, enclaves rarely have more than one host
app. In some cases, some enclaves do not provide a host
app making existing inference techniques inapplicable. To
tackle these challenges, FUZZSGX uses static analysis
and symbolic execution to extract this information. These
analyses are conducted on both host apps and enclaves,
however, host apps are considered optional. FUZZSGX
augments the analysis results with the EDL information
for generating SGX applications without a host app.
Order Dependence Analysis: One possible dependency
among ECALLs is the Happens-Before dependency (i.e.
"ECALL A must be called before ECALL B"). Figure 4

void ecall_producer(void) {
cond_buffer_t *b = &buffer;
while (no free slots in b)

wait(&b->less, &b->mutex);
fill slot in b;
signal(&b->more);

}
void ecall_consumer(void) {

cond_buffer_t *b = &buffer;
while (no occupied slots in b)

wait(&b->more, &b->mutex);
consume slot in b;
free consumed slot;
signal(&b->more);

}

static cond_buffer_t
buffer = …

void ecall_consumer(void)
void ecall_producer(void) buffer

Shared Global State Analysis
Users

clusters

Users

Figure 4: Order Dependence on enclaves: We find com-
mon users of variables used as arguments for function
calls. ecall_consumer and ecall_producer are clustered
together because of the shared variable buffer

shows an example of one such dependency. The producer
function must be called before the consumer function.
Otherwise, the program will indefinitely block inside the
consumer function. FUZZSGX uses the order dependence
analysis on enclave code to infer such dependencies, as
shown in Algorithm 1.

The pass works depending on the availability of the
host application. If a host application is available, this pass
tracks different program values (variables) used in the host
app. If the host app issues different ECALLs from the
same context in the host app, this pass finds whether there
is some dependency over return value or input arguments
among those ECALLs. Specifically, this pass goes through
all the users of a value. If a value is used in multiple
function calls, we register those functions as an order
dependency chain. Figure 5 shows partial results of running
this pass on a host app. str3 is used as the second argument
and its length is used as the third argument. Running the
pass, gives us a chain of function calls, hinting the fuzzer
that the third argument of ecall_pointer_size should be
the return value of strlen applied to the second argument.

In case the host app is missing, the pass goes through
all the global state, such as global variables, and find the
users of the global state. If FUZZSGX finds any ECALLs
in the users of the global state, it adds them to the user for

5

Algorithm 1: Order Dependence Analysis
Result: DepChain
if ∃ hostApp then

ECALL← PUBLIC_ECALLS DepChain← ∅
foreach funcs ∈ FUNCTIONS do

foreach call ∈ func.calls do
if call.calee ∈ ECALL then

temp.insert([return.def,−1, call])
foreach arg ∈ call do

temp.insert([arg.def, arg.Position, call])
end

if count(temp[value, ∗, ∗]) > 1 then
foreach [arg, call] ∈ temp[value, ∗, ∗] do

DepChain[value]←
[arg.Position, call]

end
end

end
else

clusters← ∅;
foreach var ∈ GLOBAL_V ARIABLES do

if size(var.users) > 1 then
foreach user ∈ var.users do

clusters[var].insert(user)
end

end
foreach [cluster, var] ∈ clusters do

permutations← permutation(cluster);
bestCoverage← 0;
foreach order ∈ permutations do

currentCoverage← run(order);
if currentCoverage > bestCoverage then

clusters[var]← order;
bestCoverage← currentCoverage;

end
end
DepChain← bestCoverage

end

char str3[] = "1234567890";
ret = ecall_pointer_size(global_eid, (void*)str3, strlen(str3));
if (ret != SGX_SUCCESS)

abort();

Figure 5: Order dependence analysis on host apps. The
pass goes through the host app to extract the dependency
between different arguments. str3 registers a dependency
between argument 1 and 3 for ecall_pointer_size func-
tion.

these global states. We call a set of users for a global state
cluster. While the clusters show a possible dependency
among different ECALLs, they do not tell anything about
the correct order. To infer the correct order, FUZZSGX
uses the code coverage as a metric. The observation here is
that a misplaced ECALL will either block or fail, resulting
in lower code coverage. Motivated by this observation,
FUZZSGX evaluates all permutations and picks the one
with the highest coverage score as the inferred correct order.
These clusters are used to generate programs with different
permutations, while the code coverage is dynamically
measured. For Figure 4, the pass results show that these two
functions have a shared global variable buffer, indicating
a possible dependency between the two functions.
Constant Extraction: This pass parses the initialization
statements and conditionals inside enclaves and the host
app code to extract all constant literals. We supply these
arguments as a dictionary for input mutation. This dictio-
nary helps to bypass hard-coded constraints to find new
paths.

int bBCkHMeFDd_1;
temp = (char *)&bBCkHMeFDd_1;

int* kXGyTnqXvk_1 = &bBCkHMeFDd_1;
long int KMgIidYzwI_2;

temp = (char *)&KMgIidYzwI_2;
fgets(temp,8, stdin);

char IgvAVOkRvU_3;
temp = (char *)&IgvAVOkRvU_3;
fgets(temp,1, stdin);

const char* VTXDUTIuaW_3 = &IgvAVOkRvU_3;
ret = enc_wolfSSL_CTX_set_cipher_list(global_eid,

kXGyTnqXvk_1, KMgIidYzwI_2, VTXDUTIuaW_3);

Listing 1: Code Snippet generated for Wolf SSL Enclave.
The generated program expects inputs directly using input
mutation.

Program Generation FUZZSGX generates new host apps
in the program generation phase. The generated programs
take input from the input fuzzer and directly feed it to
the enclave. The program generator requires a template
program that consists of the boilerplate code for enclave
initialization and any project-specific setup. The boilerplate
code ensures that the program generator can issue ECALLS,
without knowing any semantics about the initialization of
the enclave. In most cases, the template file simply creates
the target enclave. FUZZSGX modifies the template pro-
gram to generate code for fuzzing ECALLs and OCALLs.
For ECALLs, FUZZSGX adds code for mutating inputs
to the enclave and randomly reorders their invocation.
Similarly, for OCALLs, FUZZSGX generates code for
mutating the return value of OCALLs and may insert code
for calling nested ECALLs based on an unfair coin toss1.
The nested ECALLs invocations, if any, are also randomly
reordered in each fuzzing iteration.

During program generation, FUZZSGX follows the
information inferred in the previous stages. For instance,
based on the results of shared global state analysis,
FUZZSGX emits the code for all ECALLs in a dependency
cluster if one of the ECALL is present in the generated
test case. Listing 1 shows a snippet of generated code.
Using this mechanism, we can tackle FC4:Unavailable
Host Apps.
Seed Value Generation With the newly generated program,
FUZZSGX can start the fuzzing campaign. However,
fuzzers usually require seed inputs as the starting point
for better mutation. A simple design is starting the fuzzer
without any seed inputs. However, existing work [43]
shows that fuzzing is highly dependent on initial seed
inputs. For instance, without input format information,
random mutations struggle to bypass comparisons against
magic numbers. Therefore, to get good seed input values
for input mutation, FUZZSGX provides two mechanisms to
generate seed inputs for an enclave: 1) Symbolic Execution
and 2) Mutation-based inference.

• Symbolic Execution: In this configuration we use
symbolic execution on the enclave code and use
the interfaces identified by the Interface Parser to
symbolize input arguments to ECALLs. To tackle the
path explosion problem, instead of symbolically exe-
cuting the SGX SDK libraries, FUZZSGX concretely

1. The unfairness of the coin is a configurable parameter.

6

executes them and skips functions that do not alter the
final state of the ECALL. In this way, FUZZSGX can
reduce the number of symbolic states. Furthermore,
FUZZSGX limits the symbolic execution to a prede-
fined step count. The step count can be configured
according to the target project. This design enables
FUZZSGX to fuzz projects where symbolic execution
does not scale.

• Mutation-based Inference: Existing work proposes
different mutation strategies to find interesting inputs
without prior information about the program. GRI-
MOIRE [44] infers the structure of the input based
on code coverage feedback, whereas REDQUEEN
[45] establishes input to program state correspondence
by conducting static analysis. In this configuration,
FUZZSGX generates programs and fuzzes them with
REDQUEEN and GRIMIORE mutation strategies
without providing initial seeds.

We compare the efficacy of these two approaches in
terms of input seed generation in Section 6.
Main Fuzzing Loop FUZZSGX mutates the target program
in a continuous loop, setting up a test harness for each
generated program for input fuzzing. FUZZSGX works in
two configurations to explore ECALL order:
Exhaustive Configuration: If the number of ECALLs is less
than a configurable threshold number, FUZZSGX generates
all possible permutations of ECALL sequences. These
programs can be fuzzed in parallel using input mutation
indefinitely.
Iterative Configuration: For enclaves with a large number
of ECALLs, it might be infeasible to run all of the
permutations in parallel. In this configuration, FUZZSGX
randomly mutates the ECALL order in a continuous loop
and it can be configured to terminate each iteration after
one of the conditions: 1) A predefined amount of time has
elapsed. 2) No new path is seen for a predefined amount of
time or 3) A predefined number of input mutation cycles
have been executed.

By directly fuzzing the host-enclave boundary and
using the information extracted via the various interfaces,
we can tackle FC1:Deep Code Paths and FC3:Limited
ECALL Input and OCALL Output Coverage.
Input Mutation. Once the host app is generated using
program generation, FUZZSGX sets up a test harness
to drive the input mutation process. For input mutation,
FUZZSGX needs to instrument enclave code so that it
can export code coverage and sanitize programs to assist
in finding bugs. This instrumented code normally relies
on OS services, however, the programming environment
inside SGX enclaves is severely limited which restricts
users from using the instrumented code. FUZZSGX uti-
lizes FUZZSGX RUNTIME to extract the code coverage
information from within enclaves.

5. Implementation

We implement FUZZSGX as a modular system. For
FUZZSGX RUNTIME, the shim layer is implemented as
a shared library for the Intel SGX SDK. As described
in Section 4, the library is split into a trusted (libsgx_-
tsgxfuzz) and an untrusted part (libsgx_usgxfuzz). libsgx_-
tsgxfuzz consists of 1.1K SLOC, whereas libsgx_usgxfuzz

Component SLOC
FUZZSGX RUNTIME 1.5 K
FUZZSGX 2.1K

TABLE 1: SLOC for different components of FUZZSGX.

consists of 185 SLOC. We tried to keep the modifications
to address sanitizer and thread sanitizer to a minimum and
accommodated the changes as much as we could inside
the shim layer. To this end, we were able to run both
sanitizers with minor modifications in the Intel SGX SDK.
For address sanitizer, all of the changes were contained in
the SDK and the shim layer whereas for thread sanitizer
we added merely 74 SLOC to the project.

The main implementation of FUZZSGX is a Python
program consisting of 1.2K SLOC. This program is respon-
sible for Program Dependency Inference, Program Gener-
ation, and orchestrating the Main Fuzz Loop. The analyses
for Program Dependency Inference are implemented as
different LLVM passes, including the Order Dependence
Analysis and Constant Extraction. These passes consist of
875 SLOC. Since the Intel SGX SDK does not support
LLVM, we convert the application and the enclave to
separate LLVM bitcode files. We then run different LLVM
passes on the application bitcode file and the enclave
bitcode file.

For symbolic execution, we use angr [46], a well-
known binary analysis and symbolic execution framework.
Furthermore, to simulate the SGX SDK library functions
(e.g., sgx_is_within_encl()), we utilize angr’s symproce-
dures. Table 1 summarizes the SLOC of each component.

6. Evaluation

To evaluate FUZZSGX, we conducted our experiments
on an octa-core Intel(R) Core(TM) i7-7700 CPU with
16GiB of physical memory. Our data set includes the top
50 SGX projects on GitHub based on the project star rating.
Out of these projects, we fuzzed 26 projects compatible
with FUZZSGX. The projects left out were either outdated
(i.e. they did not work with the latest SGX SDK version)
or had compilation errors. Furthermore, we pick projects
from existing SGX vulnerability discovery papers such as
TeeREX [23] and Emilia [24]. Lastly, since libOS projects,
such as Graphene-SGX [37] and SGX-LKL [47], do not
use the Intel SGX SDK EDL files to describe the interface
between enclave and host app, we manually created the
EDL and fuzz them using program mutation only. Overall,
we fuzzed a total of 30 projects as described in Appendix
A.

The rest of this section is structured as fol-
lows: Section 6.1 summarizes the bugs found by
FUZZSGX. Section 6.2 evaluates the overhead incurred by
FUZZSGX RUNTIME. Section 6.3 evaluates the seed gen-
eration mechanisms provided by FUZZSGX. Section 6.4
evaluates FUZZSGX in terms of its bug-detection capa-
bility and efficacy in fuzzing SGX programs. Section 6.5
evaluates efficacy of program mutation generated by
FUZZSGX. Section 6.6 discusses case studies regarding
the vulnerabilities found by FUZZSGX.

7

Project Type Revision Bugs
webasm App 2281ac9 30
Graphene LibOS v1.0.1/v1.1 2
SGX-LKL LibOS c8cb0b8 6
secure-analytics-sgx App 43576a2 37
linux-sgx SDK 2.11 2
sgx-kmeans App 8ab6035 1
SGX-SQLite App c470f0a 1
Signal Contact Discovery App 1.13 1
Total 80

TABLE 2: Summary of spatial bugs found in different projects.

Project Unprotected
Objects Revision

SGX-SQLite 5 c470f0a
secure-analytics-sgx 1 43576a2
webasm 1 2281ac9
SGX-DFC 6 2281ac9

TABLE 3: Summary of temporal bugs found in different enclaves.
Objects are the unprotected resources with data races.

6.1. Reported Bugs

We categorize the bugs found into spatial and temporal
bugs. Spatial bugs are bugs related to invalid memory
accesses, whereas, temporal bugs are caused by race
conditions on valid memory accesses. To find these vulner-
abilities, we ran the fuzzer for 96 hours, in the exhaustive
configuration(section 4).
Spatial Bugs. Table 2 summarizes the spatial bugs found
by FUZZSGX. Appendix B gives the full list of the bugs
with the corresponding details. In general, we found that
although SGX projects are security-oriented, they still
suffer from bugs such as null pointer dereferences, out-
of-bound accesses, divide-by-zero, etc. The majority of
the bugs consisted of null pointer dereferences and out-of-
bound accesses.
Temporal Bugs. Table 3 summarizes the temporal bugs
found by FUZZSGX. Similar to spatial bugs, we only
list projects where we were able to find any data races.
We found that most of the enclaves with races are not
designed to be multi-threaded, however, their TCSNum
configuration parameters are set to be greater than 1
allowing concurrent enclave accesses from TCSNum
threads. To mitigate this issue, we write a simple GCC
analysis pass that parses through the enclaves to search
for synchronization API calls and warns the user if the
enclave is configured to allow multithreading without
synchronization API usage.

6.2. Runtime Benchmark

In this section, we evaluate the overhead incurred
by FUZZSGX RUNTIME. Since no existing benchmark is
available for libOS approaches, we write our custom bench-
mark program that executes different system calls with
randomized parameters. We run the benchmark natively
on Linux, inside the enclave using FUZZSGX RUNTIME
and, Graphene-SGX [37], a full-fledged security-oriented
library OS (libOS) designed for enclaves. The overhead
is averaged over ten executions to remove noise in the
results. While FUZZSGX RUNTIME emulates 49 system
calls and library functions. We focus on the functions

0
0.5
1

1.5
2

2.5

ge
ten
v
dls
ym

ge
trli
mi
t

se
trli
mi
t

mm
ap

ma
dv
ise

pth
rea
d_
k…

pth
rea
d_
s…

pth
rea
d_
g…

sig
alt
sta
ck

rea
d

Native LibFuzzSGX GrapheneFuzzSGX
Runtime

Figure 6: Average execution runtime in milliseconds
of different system calls and library functions using
native execution, FUZZSGX RUNTIME and Graphene-
SGX. While native execution is the fastest in most cases,
FUZZSGX RUNTIME incurs less overhead compared to
Graphene-SGX.

0
100
200
300
400
500
600

wolf
ss

l-s
gx

sg
x-k

mea
ns

Web
Ass

em
…

se
cu

re-
…

sg
x-m

pi

RedQueen Symbolic Execution

Figure 7: Comparison of basic block edge coverage based
on the seed generation method. The y-axis shows the
number of unique basic block edges, while the x-axis
describes different projects.

that are always invoked while fuzzing an application. For
instance, all target programs call getenv to find if the
application is running under a fuzzer.

Figure 6 shows the results of this evaluation. In
most cases, native execution is the fastest. For pthread
keys related functions, if the enclave creates the key,
FUZZSGX RUNTIME emulates these functions without
leaving the enclave. Otherwise, the call is forwarded to the
pthread library in the host app. Furthermore, to emulate
pthread keys, FUZZSGX RUNTIME uses hashing instead
of linear search, resulting in faster execution. In addition,
we cache the results of system calls to emulate them
without leaving the enclave. In all cases, Graphene-SGX’s
emulation is slower compared to FUZZSGX RUNTIME,
which stems from the fact that Graphene-SGX works
within the threat model of SGX. Whenever Graphene-
SGX transmits data to the untrusted runtime, it conducts
CPU-intensive operations such as encryption to ensure
confidentiality and integrity.

6.3. FUZZSGX Seed Generation

To evaluate the efficacy of the seed generation mech-
anisms employed by FUZZSGX, we measure the code
coverage achieved by running the programs with the
generated seed inputs. For this experiment, we run each
target project for the same period of time, decided by
the time taken by the symbolic execution engine (angr)
to complete 100 steps for each ECALL. Figure 7 shows
the basic block edge covered by the seed generated by
each method. Based on our experiments, the coverage
of seed inputs depends on the project. For projects with
pointer input arguments, such as sgx-mpi, mutation-based
techniques, such as REDQUEEN, seem to perform better,

8

Fuzzer Executions per second
FuzzSGX 60.1K
SGXFuzz 4.03K
AFL 61.5K

TABLE 4: Executions per second averaged over a period of five
minutes.

whereas for other projects, such as sgx-kmeans, symbolic
execution generates better seed inputs. WebAssembly was
an anomaly to this trend as mutation-based techniques
were not able to generate any useful inputs within the
time budget. Upon further investigation, we noticed that
WebAssembly-SGX requires a wasm module, therefore,
the input has to adhere to a compact binary instruction
format.

6.4. Fuzzing Benchmark

We evaluate the FUZZSGX in terms of its efficacy
in throughput, code coverage, and bug detection. In this
evaluation, we establish SGXFuzz [26] as the baseline for
our evaluation. Moreover, we also compare with AFL [48],
by applying to SGX host apps directly. All fuzzers are run
in a single-thread configuration.
Fuzzing Throughput: We compare the throughput of
FUZZSGX with SGXFuzz and AFL. Since we want to
focus on the fuzzing throughput irrespective of the target
enclave complexity, we write a simple enclave that has
a single ECALL. We run all of the fuzzers for a fixed
duration of two minutes and get the average executions
per second for each fuzzer. Table 4 shows the results
of this experiment. On average, AFL shows the highest
throughput, executing the target program around 62.0K
times per second. Close to AFL, FUZZSGX executes the
target program 60.1K times per second, whereas SGX-
Fuzz can execute the same enclave around 4.03K times.
FUZZSGX’s high throughput can be attributed to various
factors, such as the low overhead of FUZZSGX RUNTIME.
Moreover, since FUZZSGX RUNTIME enables compile-
time instrumentation, FUZZSGX can collect the code
coverage more efficiently compared to approaches such as
hardware trace collection [28], emulation-based techniques
[48], etc. Overall, FUZZSGX is approximately 15x faster
than SGXFuzz.
Code Coverage: In this evaluation, we present ten projects
from our evaluation data set to highlight the various
behaviors we saw during our evaluation. We run all of the
fuzzers for a fixed period of 24 hours to measure the code
coverage. Figure 8 shows the measured code coverage
of the evaluation. SGXFuzz was unable to fuzz SGX
Kmeans as its test harness used was not able to satisfy the
memory requirements for this project. More specifically,
SGX Kmeans For most projects, we see a logarithmic
progression shifted along the time for all fuzzers due to the
fact that early mutations usually yield higher code coverage,
whereas reaching deep code paths is harder, thus resulting
in a flat line. Based on our results, AFL produced less code
coverage for all of the evaluated projects, as it is not able to
extract code coverage from within the enclave. FUZZSGX
finds more code coverage for all projects, except sgx-gmp-
demo. Upon further investigation, we note that FuzzSGX
reports code coverage from the enclave implementation

and the proxy bridge between the enclave and the host app,
whereas FUZZSGX only accounts for the code coverage
from within the enclave. Based on this, we conjecture
that because of a large number of ECALLs with simple
implementations, SGXFuzz is able to find higher coverage
in sgx-gmp-demo.

Moreover, we also note that FUZZSGX finds code
coverage much faster compared to SGXFuzz and AFL.
One outlier to this trend is WebAssembly SGX, where
SGXFuzz initially found more code coverage. However,
FUZZSGX quickly catches up with SGXFuzz within a cou-
ple of minutes. Thanks to the high throughput achieved by
FUZZSGX RUNTIME and compile-time instrumentation,
FUZZSGX achieves 3.2x higher coverage than SGXFuzz
and 23x higher code coverage than AFL.
Bug Detection: In this evaluation, we count the number
of bugs found by the fuzzer. We use the same projects
as the code coverage throughput experiment and fuzz
them for the same period of time of 24 hours. Figure 9
shows the number of unique crashes found in 24 hours.
Similar to code coverage, the behavior varies from project
to project. Except sgx-mpi, FUZZSGX finds more crashes
compared to SGXFuzz for all other projects. Similarly to
code coverage, AFL finds the lowest number of crashes,
except for sgx-gmp-demo where it performed better than
SGXFuzz. Due to the high throughput and effective sani-
tization achieved using FUZZSGX RUNTIME, FUZZSGX
is able to find more crashes in the target programs. For the
evaluated projects, FUZZSGX finds 1.48x more crashes
compared to SGXFuzz and 11.6x more crashes compared
to AFL.

6.5. Program Mutation Benchmark

To evaluate FUZZSGX program mutation, we pick six
projects out of our evaluation data set based on the enclave
configuration, such as the number of ECALLs. As sgx-
demo has more than 40 ECALLs, besides sgx-demo, all
of the projects were run in the exhaustive configuration of
FUZZSGX. Furthermore, since mbedtls is intended to be
used as a trusted library for enclaves, we wrote a custom
EDL to expose mbedtls APIs. To evaluate the efficacy of
program mutation, we fuzz the developer-provided host app
without program mutation as the baseline configuration.
Both configurations were run for a fixed amount of 96
hours.
Code Coverage: Figure 10 shows the final code coverage
after running the fuzzer for 96 hours. We cannot run
input-only mutation with ContactDiscoveryEnclave, as
the corresponding host app is written in Java. For most
applications, the developer-written application results in
higher code coverage, since developers usually know the
real dependencies between different ecalls. However, for
projects such as mbedtls, we see higher code coverage
with FUZZSGX generated programs, as the unmodified
host app is only written for demonstration purposes and
does not fully exercise the functionality of the enclave.
Bug Detection: Figure 11 shows the number of unique
crashes found during the 96 hours. Program mutation
configuration finds more crashes for every project. Espe-
cially for secure-analytics-sgx, FUZZSGX was able to
find more than 100 crashes, whereas input mutation-only
did not find a single crash. Upon further investigation, we

9

0 5 10 15 20 25
Time (Hours)

1

2

3

4

Ba
sic

 B
lo

ck
s

1e3 Number of blocks hit vs Time

FussSGX
SGXFUZZ
AFL

(a) Secure Analytics SGX

0 5 10 15 20 25
Time (Hours)

0.2

0.4

0.6

0.8

1.0

Ba
sic

 B
lo

ck
s

1e3 Number of blocks hit vs Time

FussSGX
SGXFUZZ
AFL

(b) sgx-gmp-demo

0 5 10 15 20 25
Time (Hours)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ba
sic

 B
lo

ck
s

1e4 Number of blocks hit vs Time

FussSGX
SGXFUZZ
AFL

(c) SGX SQLite

0 5 10 15 20 25
Time (Hours)

1

2

3

4

5

6

Ba
sic

 B
lo

ck
s

1e2 Number of blocks hit vs Time

FussSGX
AFL

(d) SGX Kmeans

0 5 10 15 20 25
Time (Hours)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Ba
sic

 B
lo

ck
s

1e3 Number of blocks hit vs Time

FussSGX
SGXFUZZ
AFL

(e) SGX MPI

0 5 10 15 20 25
Time (Hours)

0.0

0.5

1.0

1.5

2.0

Ba
sic

 B
lo

ck
s

1e3 Number of blocks hit vs Time

FussSGX
SGXFUZZ
AFL

(f) SGX DFC

0 5 10 15 20 25
Time (Hours)

0.0

0.5

1.0

1.5

2.0

2.5

Ba
sic

 B
lo

ck
s

1e3 Number of blocks hit vs Time

FussSGX
SGXFUZZ
AFL

(g) WebAssembly SGX

0 5 10 15 20 25
Time (Hours)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Ba
sic

 B
lo

ck
s

1e3 Number of blocks hit vs Time

FussSGX
SGXFUZZ
AFL

(h) SGX AES-256

0 5 10 15 20 25
Time (Hours)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ba
sic

 B
lo

ck
s

1e4 Number of blocks hit vs Time

FussSGX
SGXFUZZ
AFL

(i) mbedtls

0 5 10 15 20 25
Time (Hours)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Ba
sic

 B
lo

ck
s

1e4 Number of blocks hit vs Time

FussSGX
SGXFUZZ
AFL

(j) WolfSSL SGX

Figure 8: Basic block exploration found by different fuzzers.

0
10
20
30
40
50
60
70
80
90
100

mb
ed
tls-
sg
x

se
cu
re-
an
aly
tics
-sg
x

SG
X-A
ES
-25
6

SG
X-D
FC

sg
x-g
mp

sg
x-k
me
an
s

sg
x-m
pi

SQ
Lit
e

We
bA
sse
mb
ly-
SG
X

wo
lfss
l-s
gx

AFL
SGXFuzz
FuzzSGX

Figure 9: Number of unique crashes found in 24 hours
found by different fuzzers.

found that the input sanitization logic is usually wrongly
misplaced in the host apps rather than enclaves. However,
as the SGX threat model indicates all parameters must be
sanitized by the enclave code, this misplaced trust enables
FUZZSGX to crash the enclave by fuzzing the ECALL
interface directly. Due to this reason, even though we find
lower code coverage, the unsanitized inputs trigger more
crashes within the enclave, even before penetrating deep
code paths.

6.6. Case Studies

SGX-LKL. The Linux Kernel Library (LKL) [47] lever-
ages the Linux kernel such that it could be linked against

1
10

100
1000

10000
100000

SGX-D
EMO

Web
Ass

em
..

se
cu

re-
an

al.
.

Con
tac

tD
isc

..

mbe
dT

LS

wolf
SSL

Input + Program Mutation
Input Mutation Only

Figure 10: Number of blocks explored by input mutation
compared to program and input mutation in 96 hours (log
scale).

user applications while removing any dependence on the
underlying architecture. This enables userspace applica-
tions to reuse features from the Linux kernel outside the
kernel itself. SGX-LKL [49] provides the same function-
ality as LKL but inside an SGX enclave.

For communication between the enclave and the host
app, SGX-LKL utilizes VirtIO [50], a lockless queuing
and communication mechanism used for emulating devices.
VirtIO users set up shared queues, and communicate over
metadata specific to the device emulated. Because of this
mechanism, SGX-LKL shares various pointers from the
host app with the enclave. While fuzzing the host-enclave
boundary, we found that the enclave uses such memory
pointers without proper validation.

Listing 2 shows one such pointer. During the block

10

0
20
40
60
80

100
120

SGX-D
EMO

Web
Ass

em
..

se
cu

re-
an

al.
.

Con
tac

tD
isc

..

mbe
dtl

s

wolf
ss

l-s
gx

Input + Program Mutation
Input Mutation Only

Figure 11: Number of bugs found by input mutation
compared to program and input mutation in 96 hours.

293 for (size_t i = 0;
i < enc->num_virtio_blk_dev;
i++)

294 {
295 enc->virtio_blk_dev_mem[i] =

host->virtio_blk_dev_mem[i];
296 const char* name =

host->virtio_blk_dev_names[i];
297 size_t name_len = oe_strlen(name) + 1;
298 enc->virtio_blk_dev_names[i] =

oe_calloc_or_die(
299 name_len,
300 sizeof(char),
301 "Could not allocate memory \n");
302 memcpy(enc->virtio_blk_dev_names[i],

name, name_len);
303 }

Listing 2: VirtIO block initialization in SGX-LKL.

device initialization, the SGX-LKL enclave directly reads
the data from untrusted memory without sanity checks,
resulting in a null pointer dereference on line 295. Although
adding sanity checks should fix the issue, this could still
result in Time-of-check-to-time-of-use (TOCTTOU) [51]
bugs, since the pointers are passed to the enclave using
untrusted runtime and can be modified later, e.g., line 302,
causing unintended behaviors inside the enclave.

These issues have been confirmed as security threats
by the developers. This disclosure led to an overhaul for
reviewing the shared pointers usage in the SGX-LKL
project 2. Note that, in the original host app, it is not
possible to call the ECALL with a null pointer. However,
thanks to the program mutation employed by FUZZSGX,
we are able to bypass the checking done in the host app
to trigger this vulnerability.

WebAssembly Enclave. WebAssembly (wasm) [52] is a
binary instruction format designed for a virtual machine
running inside web browsers to achieve near-native perfor-
mance. WebAssembly Enclave [53] runs the WebAssembly
interpreter inside an SGX enclave. This enclave requires
two inputs: 1) the path to a compiled wasm file to be
interpreted, and 2) modifiers used to modify the interpreter
behavior. We discovered various bugs while fuzzing the
WebAssembly Enclave, including null pointer dereferences
and out-of-bound accesses.

The WebAssembly Enclave uses the open syscall to
access wasm files. However, in doing so, it uses the return
value of the system call without any checking. This behav-
ior can be exploited to conduct Iago attacks [25] enabling

2. Link omitted for anonymity

information side-channels, control-flow hijackings, and
memory corruption [35], [54].

#de f i n e FATAL(. . .) { \
p r i n t f (" Error(%s :%d) : "
, __FILE__, __LINE__) ; \
p r i n t f (__VA_ARGS__) ; \

}
}

Listing 1: FATAL macro used for failure handling.

Furthermore, the handling of the failure condition shown
in Listing 1 is inadequate. In the original WebAssembly
interpreter, this macro is used to halt the execution of
the program and is called when the program faces an un-
manageable error. However, in the WebAssembly Enclave,
instead of halting or aborting the program, the program
simply returns after printing the error, resulting in code
execution with unexpected inputs. These unexpected inputs
cause memory corruption in nine different execution paths
within the enclave.

2013 if (fidx == -1) {
2014 entry = "_main";
2015 fidx = get_export_fidx(m, entry);
2016 }
2017 if (fidx == -1) {
2018 FATAL("no exported function"

"named '%s'\n", entry);
2019 }
2020 type = m->functions[fidx].type;

Listing 3: WebAssembly enclave code for getting function
index.

For instance, in Listing 3, the enclave tries to find
the function index, fidx, based on the input arguments.
However, if the function is not found, the enclave calls
the FATAL macro at line 2018. The subsequent code is
written with the assumption that fidx has a sane value
and continues execution with an invalid fidx, resulting in
memory corruption inside the enclave.

1520 Module *load_module(uint32_t len,
uint8_t* file_contents, char *path, Options options){

1521 uint32_t mod_len;
1522 uint8_t *bytes;
1523 uint8_t vt;
1524 uint32_t pos = 0, word;
1525 Module *m;
1526
1527 // Allocate the module
1528 m = (Module*) acalloc(1, sizeof(Module), "Module");
1529 m->path = path;
1530 m->options = options;
...
1991 _wa_current_module_ = m;
1992

Listing 4: WebAssembly enclave code for interpreting
instructions.

Listing 4 shows a data race in the WebAssembly
enclave that can lead to data leakage. Whenever wasm
code is executed in the WebAssembly Enclave, the enclave
creates a module for processing the code. At the end of each
execution, the module is cleaned so that the computation’s
secrecy is preserved. During fuzzing, we found that the
variable _wa_current_module_ pointing to the current
module is not protected by any locks, enabling data leakage

11

from within the enclave. Moreover, the variable can be
easily controlled using the input arguments of the ECALL.
To do so, a malicious thread can preempt an ECALL mid-
processing after the instruction at line 1991. Next, the
attacker waits for a user to invoke the same ECALL. Once
the ECALL reaches line 1991 in the victim thread, we
can suspend the victim thread and resume our malicious
thread. Since there is only one copy of the current module,
the current module will point to the module of the victim
thread. Therefore, in the attacker thread, we can read the
information contained in the victim module thread using
the malicious thread. To achieve this fine-grained execution
control, attackers can use SGX-Step [55].

Case Study: SGX-KMEANS. K-means is a clustering
algorithm used in various applications such as data mining
[56], data compression [57], and pattern recognition [58].
SGX-KMEANS [59] trains a k-means model inside an
SGX enclave protecting the Intellectual Property (IP) of
the k-means model. While fuzzing SGX-KMEANS, we
find that it fails to sanitize the input parameters in the code
path shown in Listing 5. The value of k is supplied by the
untrusted runtime and used without checking. Furthermore,
after lines 18, 24, and 23, there are no checks to see if
the dynamic memory allocations were successful. Hence,
calling the ECALL with a large value of k fails the memory
allocation, resulting in a null pointer dereference on line
29.
18 float ** c1 = (float * *) calloc(k*m,

sizeof(float *)); // temp centroids
19
23 for (h = i = 0; i < k; h += n / k, i++) {
24 c1[i] = (float *) calloc(m, sizeof(float));
25 if (!centroids) {
26 c[i] = (float *) calloc(m, sizeof(float));
27 }
28 // pick k points as initial centroids
29 for (j = m; j-- > 0; c[i][j] = data[h][j]);

Listing 5: Source Code

7. Discussion

FUZZSGX security model feasibility SGX threat model
considers only the enclave implementation as trusted, as
described in subsection 2.2. Due to this design choice,
only the enclave and the hardware are checked for integrity
measurements, leaving the malicious host app to freely
control the inputs to an enclave. An attacker can concretely
exploit the found bugs by modifying host apps to send
arbitrary inputs to the enclave, including malicious inputs
triggering the vulnerabilities found by FUZZSGX. We
showcase two different mechanisms to control the input
to the enclaves: 1) rebuilding the host app, and 2) binary
rewriting.
Rebuilding Host App: Enclaves are loosely coupled to their
host apps. Due to this design, an attacker can rebuild the
host app with malicious code to freely control the inputs
to the enclave. FUZZSGX is a running demonstration of
this mechanism, as we mutate the host app to generate a
"malicious" copy such that FUZZSGX uses to find inputs
to crash the program.
Binary Rewriting: Binary rewriting patches the behavior
of an existing binary by rewriting instructions in a binary.

To demonstrate how binary rewriting can control the inputs
to enclaves, we patch the code using both dynamic and
static binary rewriting techniques [60]. Dynamic binary
rewriting modifies the code during execution. On a high
level, it patches the code by obtaining writing permission
to code memory and modifies the prologue of a function or
a function pointer to redirect code execution to malicious
code. For our purposes, we use a simple detour-based patch.
We use the funchook [61] library to create a detour that
modifies the input arguments to the enclave. After applying
the patch we can fully control the value transmitted to the
enclave. On the other hand, static binary rewriting patches
the binary before it runs. While this mechanism is more
stealthy, it requires manual effort to find the addresses of
the functions and variables. As a demonstration, we use
Patcherex [62] with the detour-based backend to control
the input to the enclave.
Applying FUZZSGX to other SDK. FUZZSGX has been
implemented with the Intel SGX SDK, however, our design
is generic to retrofit other TEE SDK implementations. As
a demonstration, we cover a few SDK implementations
to describe how FUZZSGX can work with these imple-
mentations. In general, to port FUZZSGX, users need
to: 1) link the trusted library (libsgx_tsgxfuzz.so) to the
trusted partition, 2) link the untrusted library (libsgx_ts-
gxfuzz.so) to the untrusted partition, and 3) add glue logic
to enable communication between the libsgx_tsgxfuzz.so
and libsgx_usgxfuzz.so.
OpenEnclave [63] (OE): OE provides a TEE architecture-
agnostic way to make enclave applications. The workflow
is similar to the Intel SGX SDK and the applications are
partitioned into a host app and an enclave. Furthermore,
the interface is defined using an EDL file. Moreover, the
EDL format used by OE is similar to the Intel SGX SDK’s
EDL format. Users can link libsgx_tsgxfuzz.so with the
enclave and libsgx_usgxfuzz.so to the host app. Lastly,
users can write the OE EDL based on the Intel SGX SDK
EDL to enable communication between the libraries.
Keystone [64]: KeyStone-SDK enables building applica-
tions for the Keystone (RISC-V) TEE architecture. While
this SDK is developed for a completely different architec-
ture, the SDK provides similar facilities as Intel SGX SDK.
Keystone applications use Edge libraries to communicate
between the host and enclave3. For enclave manipulation
purposes, the host app is linked with Host libraries, whereas
the programming environment in the enclave is defined by
the Enclave Application libraries. 4 Keystone also requires a
trusted runtime or kernel to run in the S-Mode of the trusted
world. The trusted runtime used by Keystone-SDK is called
Eyrie. Users can port FUZZSGX to Keystone-SDK by
linking libsgx_tsgxfuzz.so with either the Eyrie runtime
or Enclave Application, and linking libsgx_usgxfuzz.so to
the host application. Lastly, users will need to implement
the glue logic to enable communication between the trusted
and untrusted libraries. However, unlike OE and the Intel
SGX SDK, Keystone-SDK does not provide an automated
way to generate the glue code. To this end, users will need
to manually write the glue code to enable communication
between libsgx_tsgxfuzz.so and libsgx_usgxfuzz.so.

3. Currently, only OCALLs are supported. However, ecalls can be
emulated using a polling mechanism.

4. Keystone applications are also linked with verification libraries, but
for our purposes, we do not consider the verification procedure.

12

Conclusion: In general, each SDK splits the application
into a secure (enclave) and non-secure (host app) part.
Since we design FUZZSGX with this partitioned model
in mind, we apply FUZZSGX to most SDKs with a parti-
tioned application model. Note that, FUZZSGX does not
work with un-partitioned TEE applications, i.e., SDKs that
allow running unmodified applications inside an enclave,
such as Graphene [37], SGX-LKL [47], etc., or SDKs
providing Function as a Service (FAAS), such as Enarx
[65], Teaclave [66], etc.
Fuzzing hardware-mode enclaves Due to the limited
resources available for enclave mode, fuzzing enclaves
in hardware mode does not scale. A naive way to tackle
this problem could be emulating the enclave inside an
emulator [67]. However, the SGX attestation process
includes hardware integrity measurements and it should
be impossible for fuzzers to bypass the SGX remote
attestation when instrumented with fuzzer and sanitizer
instrumentation [23]. If a release mode enclave does not
properly implement attestation or enables debug support,
there are much simpler mechanisms to thwart the security
guarantees of SGX.
Different mutation strategies. FUZZSGX uses both
program and input mutation for fuzzing. Each mutated
program is fuzzed using input mutation until a pre-defined
condition is met. As mentioned in Section 4, these are naive
conditions, such as fixed timeout. However, the optimal
strategy for initiating program mutation is dependent on
the target program and could be a combination of different
conditions. For instance, while fuzzing programs with
several order dependencies, focusing on program mutations
would be more beneficial as only input mutations will
not be able to resolve these dependencies. We leave this
exploration of optimal mutation strategies as future work.
Dynamically provisioned enclaves. SGX enclaves can
dynamically provision code for confidentiality purposes
[68]. As these systems are used in release mode, we
do not expect them to be compatible with FUZZSGX.
Alternatively, these frameworks can be modified to link
the enclave code with FUZZSGX RUNTIME before dynam-
ically provisioning the code. However, Supporting such
frameworks is outside the scope of this paper.
Bug reproducibility. For FUZZSGX, we were able to
reproduce all of the bugs reported by the fuzzer, besides one
particular project, SGX-SQLite. In the case of SQLite, the
enclave maintains its internal state in the current database
across executions. During fuzzing we were not able to
capture the internal state of the project, resulting in bug
reports where the input values were not able to reproduce
the bug. We leave stateful fuzzing support for FUZZSGX
as future work.

8. Related Work

SGX Vulnerabilities. Intel SGX introduces a novel way to
minimize the TCB for an application. However, Intel SGX
is vulnerable to multiple types of attacks. Jaehyuk et.al,
[69] corrupted the memory of the ASLR-enabled SGX
enclave successfully by using modified return-oriented
programming attacks. Several works [70], [71] have shown
that SGX is vulnerable to speculative execution attacks.
Moreover, several side-channel attacks [55], [72] have

been successful in stealing data from within the enclaves,
bypassing SGX memory protection.
SGX Vulnerability Detection and Prevention Tools.
TeeRex [23] uses symbolic execution and pointer tracking
to find bugs in enclaves. Khandaker et. al, [73] uses
symbolic execution to find bugs in SGX programs. Similar
to TeeRex, this paper also faces the path explosion problem.
FUZZSGX makes symbolic execution optional, scaling it
to larger projects. Like FUZZSGX, Emilia [24] fuzzes the
syscall-app boundary in legacy applications to discover
Iago vulnerabilities, however, Emilia works on legacy
programs instead of SGX applications. Furthermore, it does
not fuzz the user-host app boundary. FUZZSGX can mutate
input at more boundaries in the system. De Backer [74]
exploited side-channels to infer crashes inside enclaves,
unlike FUZZSGX this work is not used to find new bugs
but only to infer a crash inside an enclave.

Furthermore, there exist different works to protect SGX
from vulnerabilities. Moat [75] protects the confidentiality
of the SGX program against infrastructure protocol attacks.
Several works [76], [77] have been proposed to defend
SGX programs from side-channel attacks. SGXBounds [78]
instruments SGX enclaves with bounds checking to miti-
gate memory corruption bugs. MPTEE [79] enables flexible
page-level memory protection inside SGX enclaves.
Fuzzers. Even though FUZZSGX is the first coverage-
guided fuzzer for Intel SGX applications, fuzzing has
been a well-researched area in other domains, and various
techniques, such as static analysis, interface extraction,
symbolic execution, emulation, etc., have been utilized to
augment the fuzzing process. For interface aware fuzzing,
IMF [80] infers the API model using value and order
dependence from kernel traces. Similarly, RESTLER [81]
infers the producer-consumer dependencies for REST APIs
by dynamically analyzing the responses for REST requests.
While both of these tools try to infer the dependencies
between different calls the methodology used is entirely
different. FUZZSGX uses static analysis to extract depen-
dencies, whereas these works use dynamic analysis to infer
program dependencies. DIFUZE [82] conducts interface-
aware fuzzing by learning the ioctl interface implemented
by the device drivers. Similarly, like FUZZSGX, other
fuzzers have used static analysis to aid fuzzing. There has
been existing work on leveraging static analysis to augment
the fuzzing process. Moonshine [83] uses static analysis
to distill meaningful seeds for OS fuzzers by collecting
the system call traces from userspace programs. Razzer
[84] uses static analysis to find race conditions in the
Linux kernel. Like FUZZSGX, several fuzzers [85], [86]
have used symbolic execution to improve the efficacy of
fuzzing.

9. Conclusion

While Intel SGX has been released for a while,
a comprehensive fuzzing tool for SGX programs has
been missing. In this paper, we presented FUZZSGX,
a comprehensive fuzzing suite for Intel SGX enclave
implementations. We show that Intel SGX programs still
suffer from memory corruption bugs. FUZZSGX can
find those corruptions using techniques such as symbolic
execution, input mutation, and program mutation. By using
FUZZSGX we found 93 bugs in 30 SGX projects. Based on

13

our results, FUZZSGX is a promising tool for automatically
discovering bugs in real-world SGX programs.

Acknowledgments

We thank the anonymous reviewers for their valuable
comments. This work was supported in part by NSF under
grant NSF CNS-2145744. Any opinions, findings, and
conclusions in this paper are those of the authors and
do not necessarily reflect the views of the NSF. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the U.S.
Government.

References

[1] Ayeks, “ayeks/sgx-hardware: This is a list of hardware which is
supports intel sgx - software guard extensions.” https://github.com/
ayeks/SGX-hardware, 05 2022, (Accessed on 10/03/2021).

[2] K. Kim, C. H. Kim, J. J. Rhee, X. Yu, H. Chen, D. J. Tian, and
B. Lee, “Vessels: Efficient and scalable deep learning prediction on
trusted processors,” in Proceedings of the 11th ACM Symposium
on Cloud Computing, ser. SoCC ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 462–476. [Online].
Available: https://doi.org/10.1145/3419111.3421282

[3] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich, “Vc3: Trustworthy data
analytics in the cloud using sgx,” in 2015 IEEE Symposium on
Security and Privacy, 2015, pp. 38–54.

[4] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private
execution of neural networks in trusted hardware,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=rJVorjCcKQ

[5] C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure database
using sgx,” in 2018 IEEE Symposium on Security and Privacy (SP),
2018, pp. 264–278.

[6] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix:
An efficient oblivious search index,” in 2018 IEEE Symposium on
Security and Privacy (SP), 2018, pp. 279–296.

[7] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth,
P. Bhatotia, and C. Fetzer, “P<span class="smallcaps
smallercapital">esos: Policy enhanced secure object
store,” in Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, Porto, Portugal, April 23-26, 2018, ser. EuroSys ’18.
New York, NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3190508.3190518

[8] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh, “Shieldstore:
Shielded in-memory key-value storage with sgx,” in Proceedings
of the Fourteenth EuroSys Conference 2019, ser. EuroSys ’19.
New York, NY, USA: Association for Computing Machinery, 2019.
[Online]. Available: https://doi.org/10.1145/3302424.3303951

[9] S. Eskandarian and M. Zaharia, “Oblidb: Oblivious query
processing for secure databases,” Proc. VLDB Endow., vol. 13,
no. 2, p. 169–183, Oct. 2019. [Online]. Available: https:
//doi.org/10.14778/3364324.3364331

[10] S. Shinde, S. Wang, P. Yuan, A. Hobor, A. Roychoudhury, and
P. Saxena, “Besfs: A POSIX filesystem for enclaves with a
mechanized safety proof,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp.
523–540. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/shinde

[11] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Obliviate: A data
oblivious filesystem for intel sgx,” in NDSS. .: NDSS, 2018.

[12] J. I. Choi, D. J. Tian, G. Hernandez, C. Patton, B. Mood, T. Shrimp-
ton, K. R. B. Butler, and P. Traynor, “A Hybrid Approach to
Secure Function Evaluation using SGX,” in Proceedings of the
ACM Asia Conference on Computer and Communications Security
(AsiaCCS’19), 2019.

[13] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell,
D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer,
“SCONE: Secure linux containers with intel SGX,” in 12th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 16). Savannah, GA: USENIX Association, Nov. 2016, pp.
689–703. [Online]. Available: https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/arnautov

[14] R. Paccagnella, P. Datta, W. Hassan, A. Bates, C. Fletcher, A. Miller,
and D. Tian, “Custos: Practical tamper-evident auditing of operating
systems using trusted execution,” in 27th Annual Network and
Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020, 01 2020.

[15] D. J. Tian, J. I. Choi, G. Hernandez, P. Traynor, and K. R. B.
Butler, “A practical intel sgx setting for linux containers in the
cloud,” in Proceedings of the Ninth ACM Conference on Data and
Application Security and Privacy, ser. CODASPY ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 255–266.
[Online]. Available: https://doi.org/10.1145/3292006.3300030

[16] D. Sturzenegger, A. Sardon, S. Deml, and T. Hardjono, “Confidential
computing for privacy-preserving contact tracing,” arXiv preprint
arXiv:2006.14235, 2020.

[17] F. Y. Rashid, “The rise of confidential computing: Big tech
companies are adopting a new security model to protect data while
it’s in use-[news],” IEEE Spectrum, vol. 57, no. 6, pp. 8–9, 2020.

[18] Intel, “Linux sgx sdk,” https://github.com/intel/linux-sgx, 2022.

[19] M. Schwarz, S. Weiser, and D. Gruß, “Practical enclave malware
with intel sgx,” in Detection of Intrusions and Malware, and
Vulnerability Assessment, ser. Lecture Notes in Computer Science.
Springer International, 6 2019, pp. 177–196.

[20] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim,
M. Peinado, and B. B. Kang, “Hacking in darkness: Return-oriented
programming against secure enclaves,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 523–539.

[21] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom, “Sgaxe: How
sgx fails in practice,” 2020.

[22] N. Weichbrodt, A. Kurmus, P. R. Pietzuch, and R. Kapitza, “Async-
shock: Exploiting synchronisation bugs in intel sgx enclaves,” in
ESORICS, 2016.

[23] T. Cloosters, M. Rodler, and L. Davi, “Teerex: Discovery and ex-
ploitation of memory corruption vulnerabilities in {SGX} enclaves,”
in 29th {USENIX} Security Symposium ({USENIX} Security 20),
2020, pp. 841–858.

[24] R. Cui, L. Zhao, and D. Lie, “Emilia: Catching iago in legacy code,”
in Network and Distributed Systems Security (NDSS) Symposium
2021 21-25 February 2021, 2021.

[25] S. Checkoway and H. Shacham, “Iago attacks: why the system call
api is a bad untrusted rpc interface,” ACM SIGARCH Computer
Architecture News, vol. 41, no. 1, pp. 253–264, 2013.

[26] T. Cloosters, J. Willbold, T. Holz, and L. Davi, “{SGXFuzz}: Effi-
ciently synthesizing nested structures for {SGX} enclave fuzzing,”
in 31st USENIX Security Symposium (USENIX Security 22), 2022,
pp. 3147–3164.

[27] “Attestation services for intel® software guard extensions,”
https://www.intel.com/content/www/us/en/developer/tools/
software-guard-extensions/attestation-services.html, (Accessed on
03/11/2023).

[28] A. Kleen and B. Strong, “Intel processor trace on linux,” Tracing
Summit, vol. 2015, 2015.

[29] “Binaryonly fuzzing | aflplusplus,” https://aflplus.plus/docs/
binaryonly_fuzzing/, (Accessed on 03/11/2023).

[30] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dresssanitizer: A fast address sanity checker,” in 2012 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 12), 2012, pp.
309–318.

14

https://github.com/ayeks/SGX-hardware
https://github.com/ayeks/SGX-hardware
https://doi.org/10.1145/3419111.3421282
https://openreview.net/forum?id=rJVorjCcKQ
https://doi.org/10.1145/3190508.3190518
https://doi.org/10.1145/3302424.3303951
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.14778/3364324.3364331
https://www.usenix.org/conference/usenixsecurity20/presentation/shinde
https://www.usenix.org/conference/usenixsecurity20/presentation/shinde
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://doi.org/10.1145/3292006.3300030
https://github.com/intel/linux-sgx
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://aflplus.plus/docs/binaryonly_fuzzing/
https://aflplus.plus/docs/binaryonly_fuzzing/

[31] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: data race
detection in practice,” in Proceedings of the workshop on binary
instrumentation and applications, 2009, pp. 62–71.

[32] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol.
ePrint Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[33] AFL, “Ubuntu manpage: afl-gcc - gcc wrapper for american
fuzzy lop (afl),” http://manpages.ubuntu.com/manpages/bionic/
man1/afl-gcc.1.html, 05 2022, (Accessed on 04/04/2021).

[34] Kirit1193, “kirit1193/intel-sgx-fuzzer: Fuzz sealing and unseal-
ing operations in sgx using afl,” https://github.com/kirit1193/
Intel-SGX-Fuzzer, 05 2022, (Accessed on 10/03/2021).

[35] M. R. Khandaker, Y. Cheng, Z. Wang, and T. Wei, “Coin attacks: On
insecurity of enclave untrusted interfaces in sgx,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2020, pp.
971–985.

[36] Signal, “Signal contact discovery,” https://signal.org/blog/
private-contact-discovery/, 2022.

[37] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical
library {OS} for unmodified applications on {SGX},” in 2017
{USENIX} Annual Technical Conference ({USENIX}{ATC} 17),
2017, pp. 645–658.

[38] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia,
and S. Yan, “Occlum: Secure and efficient multitasking inside a
single enclave of intel sgx,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 955–970.

[39] C. Flanagan and S. N. Freund, “Fasttrack: efficient and precise
dynamic race detection,” ACM Sigplan Notices, vol. 44, no. 6, pp.
121–133, 2009.

[40] Google, “Tsan support for static libraries,” https://github.com/
google/sanitizers/issues/1383, 2022.

[41] K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “{FuzzGen}:
Automatic fuzzer generation,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 2271–2287.

[42] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano,
C. Lemieux, L. Szekeres, and W. Wang, “Fudge: fuzz driver gener-
ation at scale,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2019, pp. 975–985.

[43] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco,
and D. Brumley, “Optimizing seed selection for fuzzing,” in 23rd
{USENIX} Security Symposium ({USENIX} Security 14), 2014, pp.
861–875.

[44] T. Blazytko, C. Aschermann, M. Schlögel, A. Abbasi, S. Schumilo,
S. Wörner, and T. Holz, “Grimoire: Synthesizing structure while
fuzzing.” in USENIX Security Symposium, vol. 19, 2019.

[45] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence.” in NDSS,
vol. 19, 2019, pp. 1–15.

[46] F. Wang and Y. Shoshitaishvili, “Angr-the next generation of binary
analysis,” in 2017 IEEE Cybersecurity Development (SecDev).
IEEE, 2017, pp. 8–9.

[47] O. Purdila, L. A. Grijincu, and N. Tapus, “Lkl: The linux kernel
library,” in 9th RoEduNet IEEE International Conference. IEEE,
2010, pp. 328–333.

[48] “afl/readme.qemu at master · mirrorer/afl · github,” https://github.
com/mirrorer/afl/blob/master/qemu_mode/README.qemu, (Ac-
cessed on 03/14/2023).

[49] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov,
and P. Pietzuch, “Sgx-lkl: Securing the host os interface for trusted
execution,” arXiv preprint arXiv:1908.11143, 2019.

[50] R. Russell, “virtio: towards a de-facto standard for virtual i/o
devices,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5,
pp. 95–103, 2008.

[51] D. Tsafrir, T. Hertz, D. A. Wagner, and D. Da Silva, “Portably
solving file tocttou races with hardness amplification.” in FAST,
vol. 8, 2008, pp. 1–18.

[52] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the
web up to speed with webassembly,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2017, pp. 185–200.

[53] Github, “Web assembly enclave,” https://github.com/
SabaEskandarian/webassemblyEnclave, 2022.

[54] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems,” in
2015 IEEE Symposium on Security and Privacy, 2015, pp. 640–656.

[55] J. V. Bulck, F. Piessens, and R. Strackx, “Sgx-step: A practical attack
framework for precise enclave execution control,” Proceedings of
the 2nd Workshop on System Software for Trusted Execution, 2017.

[56] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth et al., “Knowledge
discovery and data mining: Towards a unifying framework.” in
KDD, vol. 96, 1996, pp. 82–88.

[57] K. L. Oehler and R. M. Gray, “Combining image compression
and classification using vector quantization,” IEEE transactions
on pattern analysis and machine intelligence, vol. 17, no. 5, pp.
461–473, 1995.

[58] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification and
scene analysis. Wiley New York, 1973, vol. 3.

[59] S. K-means, “Sgx k-means,” https://github.com/dsc-sgx/sgx-kmeans,
2022.

[60] M. Wenzl, G. Merzdovnik, J. Ullrich, and E. Weippl, “From
hack to elaborate technique—a survey on binary rewriting,” ACM
Computing Surveys (CSUR), vol. 52, no. 3, pp. 1–37, 2019.

[61] Kubo, “kubo/funchook: Hook function calls by inserting jump
instructions at runtime,” https://github.com/kubo/funchook, 2022,
(Accessed on 05/01/2022).

[62] Y. Shoshitaishvili, A. Bianchi, K. Borgolte, A. Cama, J. Corbetta,
F. Disperati, A. Dutcher, J. Grosen, P. Grosen, A. Machiry, C. Salls,
N. Stephens, R. Wang, and G. Vigna, “Mechanical phish: Resilient
autonomous hacking,” IEEE Security Privacy, vol. 16, no. 2, pp.
12–22, 2018.

[63] “Open enclave · github,” https://github.com/openenclave, (Accessed
on 10/26/2022).

[64] “Keystone enclave · github,” https://github.com/keystone-enclave,
(Accessed on 10/26/2022).

[65] “Enarx | enarx,” https://enarx.dev/, (Accessed on 10/26/2022).

[66] “Github - apache/incubator-teaclave: Apache teaclave (incubating)
is an open source universal secure computing platform, making
computation on privacy-sensitive data safe and simple.” https://
github.com/apache/incubator-teaclave, (Accessed on 10/26/2022).

[67] P. Jain, S. J. Desai, M.-W. Shih, T. Kim, S. M. Kim, J.-H. Lee,
C. Choi, Y. Shin, B. B. Kang, and D. Han, “Opensgx: An open
platform for sgx research.” in NDSS, vol. 16, 2016, pp. 21–24.

[68] E. Bauman, H. Wang, M. Zhang, and Z. Lin, “Sgxelide: enabling
enclave code secrecy via self-modification,” in Proceedings of the
2018 International Symposium on Code Generation and Optimiza-
tion, 2018, pp. 75–86.

[69] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi,
T. Kim, M. Peinado, and B. B. Kang, “Hacking in darkness:
Return-oriented programming against secure enclaves,” in
26th USENIX Security Symposium (USENIX Security 17).
Vancouver, BC: USENIX Association, Aug. 2017, pp. 523–
539. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/lee-jaehyuk

[70] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the intel SGX kingdom
with transient out-of-order execution,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, p. 991–1008. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/bulck

[71] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai,
“Sgxpectre: Stealing intel secrets from sgx enclaves via speculative
execution,” in 2019 IEEE European Symposium on Security and
Privacy (EuroS P), 2019, pp. 142–157.

15

http://manpages.ubuntu.com/manpages/bionic/man1/afl-gcc.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/afl-gcc.1.html
https://github.com/kirit1193/Intel-SGX-Fuzzer
https://github.com/kirit1193/Intel-SGX-Fuzzer
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://github.com/google/sanitizers/issues/1383
https://github.com/google/sanitizers/issues/1383
https://github.com/mirrorer/afl/blob/master/qemu_mode/README.qemu
https://github.com/mirrorer/afl/blob/master/qemu_mode/README.qemu
https://github.com/SabaEskandarian/webassemblyEnclave
https://github.com/SabaEskandarian/webassemblyEnclave
https://github.com/dsc-sgx/sgx-kmeans
https://github.com/kubo/funchook
https://github.com/openenclave
https://github.com/keystone-enclave
https://enarx.dev/
https://github.com/apache/incubator-teaclave
https://github.com/apache/incubator-teaclave
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

[72] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella,
and D. Gruss, “Platypus: Software-based power side-channel attacks
on x86,” in 2021 IEEE Symposium on Security and Privacy (SP),
2021.

[73] M. Khandaker, Y. Cheng, Z. Wang, and T. Wei, “Coin attacks: On
insecurity of enclave untrusted interfaces in sgx,” in ASPLOS ’20:
Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, March 16-20, 2020, 03 2020, pp.
971–985.

[74] T. De Backer, “Fuzzing intel sgx enclaves,” Master’s thesis, KU
Leuven, 2018.

[75] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani, “Moat: Verifying
confidentiality of enclave programs,” Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security,
2015.

[76] Z. yu Zhang, X. li Zhang, Q. Li, K. Sun, Y. Zhang, S. Liu, Y. Liu,
and X. Li, “See through walls: Detecting malware in sgx enclaves
with sgx-bouncer,” in Proceedings of the ACM Asia Conference on
Computer and Communications Security (ASIACCS), 2021.

[77] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom,
“Cacheout: Leaking data on intel cpus via cache evictions,” arXiv
preprint arXiv:2006.13353, 2020.

[78] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia,
P. Felber, and C. Fetzer, “Sgxbounds: Memory safety for shielded
execution,” in Proceedings of the Twelfth European Conference on
Computer Systems, 2017, pp. 205–221.

[79] W. Zhao, K. Lu, Y. Qi, and S. Qi, “Mptee: bringing flexible and
efficient memory protection to intel sgx,” in Proceedings of the
Fifteenth European Conference on Computer Systems, 2020, pp.
1–15.

[80] H. Han and S. K. Cha, “Imf: Inferred model-based fuzzer,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017, pp. 2345–2358.

[81] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful
rest api fuzzing,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 2019, pp. 748–758.

[82] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao,
C. Kruegel, and G. Vigna, “Difuze: Interface aware fuzzing
for kernel drivers,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp.
2123–2138.

[83] S. Pailoor, A. Aday, and S. Jana, “Moonshine: optimizing os fuzzer
seed selection with trace distillation,” in 27th {USENIX} Security
Symposium ({USENIX} Security 18), 2018, pp. 729–743.

[84] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer:
Finding kernel race bugs through fuzzing,” in 2019 IEEE Symposium
on Security and Privacy (SP), 2019, pp. 754–768.

[85] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee,
“Hfl: Hybrid fuzzing on the linux kernel,” in NDSS, 2020.

[86] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym: a practical
concolic execution engine tailored for hybrid fuzzing,” in 27th
{USENIX} Security Symposium ({USENIX} Security 18), 2018, pp.
745–761.

[87] S. S. Enclave, “Sgx sqlite enclave,” https://github.com/yerzhan7/
SGX_SQLite, 2022.

[88] S. MPI, “Sgx mpi,” https://github.com/dsc-sgx/sgx-mpi, 2022.

[89] S. Analytics, “Secure analytics,” https://github.com/swarupchandra/
secure-analytics-sgx, 2022.

Appendix

1. Evaluation Dataset Selection Criteria

For evaluating FUZZSGX, we searched Github with
"SGX" keyword and filtered out the top 50 projects based
on stars. Out of these projects, we fuzzed the projects that
FUZZSGX was able to fuzz, as FUZZSGX only works

Project Name Project Version
1 EleOS 15a6f23
2 TalOS bb0b619
3 sgx-ra-sample 96f5b5c
4 secpass b89454f
5 hello-enclave a3358ac
6 Graphene bdddc84
7 SGX-LKL 69073fb
8 mbedtls-SGX eab8e36
9 SGX-DFC d3f7e47
10 BiORAM-SGX 8a16861
11 SGX-AES-256 b0d87a8
12 SGX-server-client aee36ec
13 SGX_SQLite c470f0a
14 eigen-sgx 34dc0d0
15 mnist-sgx 07ab764
16 secure-analytics-sgx 43576a2
17 sgx-db dafef82
18 sgx-gmp-demo 85cd040
19 sgx-gwas 24e59f3
20 sgx-kmeans 8ab6035
21 sgx-log 7b5530e
22 sgx-mpi 504ce81
23 sgx-nbench 799f0fc
24 sgx-pwenclave b81eace
25 sgx_protect_file 5f2e64e
26 webassemblyEnclave 2281ac9
27 wolfssl-examples 6a165d8
28 SGX-OpenSSL 2a1b2b4
29 signalapp a6a0c15
30 sgx-wallet 700f2a6

TABLE 5: List of projects fuzzed.

with C code and is currently only adaptable with Intel
SGX SDK projects. In addition to this, we try to evaluate
projects, explored by existing vulnerability finding tools
such as Emilia and TeeREX. Furthermore, where applicable
we also tried fuzzing projects in dumb mode, i.e., without
code coverage feedback. Table 5 lists all the projects we
have fuzzed.

2. Bug Report

Table 6 gives the full list of spatial bugs found by
FUZZSGX.

16

https://github.com/yerzhan7/SGX_SQLite
https://github.com/yerzhan7/SGX_SQLite
https://github.com/dsc-sgx/sgx-mpi
https://github.com/swarupchandra/secure-analytics-sgx
https://github.com/swarupchandra/secure-analytics-sgx

No. Type Project Name Version Function / File:line Status
1 Null pointer access webasm [53] 2281ac9 main / App.cpp::447 Confirmed
2 Null pointer access webasm [53] 2281ac9 load_module / wa.cpp:1731 Confirmed
3 Null pointer access webasm [53] 2281ac9 acalloc / util.cpp:89 Confirmed
4 Null pointer access webasm [53] 2281ac9 load_module / wa.cpp:1953 Confirmed
5 Null pointer access webasm [53] 2281ac9 arecalloc / util.cpp:99 Confirmed
6 Null pointer access webasm [53] 2281ac9 invoke / wa.cpp:2018 Confirmed
7 Null pointer access webasm [53] 2281ac9 thunk_out / wa.cpp:555 Confirmed
8 Null pointer access webasm [53] 2281ac9 load_module / wa.cpp:1669 Confirmed
9 Null pointer access webasm [53] 2281ac9 read_LEB_ / util.cpp:31 Confirmed
10 Null pointer access webasm [53] 2281ac9 setup_thunk_in / wa.cpp:605 Confirmed
11 Out-of-bounds access* SGX SQLite [87] c470f0a Unknown* Notified
12 Null pointer access sgx-lkl [49] c8cb0b8 lkl_virtio_console_add / virtio_console.c:40 Confirmed

13 Null pointer access sgx-lkl [49] c8cb0b8 initialize_enclave_event_channel /
enclave_event_channel.c:180 Confirmed

14 Null pointer access sgx-lkl [49] c8cb0b8 enclave_nanos / enclave_timer.c:31 Confirmed
15 Null pointer access sgx-lkl [49] c8cb0b8 _copy_shared_memory / enclave_oe.c:295 Confirmed
16 Null pointer access sgx-lkl [49] c8cb0b8 _copy_shared_memory /enclave_oe.c:296 Confirmed
17 Null pointer access sgx-lkl [49] c8cb0b8 _free_shared_memory / enclave_oe.c:332 Confirmed
18 Null pointer access graphene [37] v1.0.1 sgx_copy_to_enclav / enclave_framework.c:89 Confirmed
19 Null pointer access graphene [37] v1.1 sgx_copy_to_enclav / enclave_framework.c:89 Confirmed
20 Abort sgx-mpi [88] 504ce81 main / App.cpp:187 Notified

21 Out-of-bounds access linux-sgx [18] 2.11 ECALL_new_container_classes_demo /
Libcxx.cpp:594 Notified

22 Hang sgx-kmeans [59] 8ab6035 k_means / Enclave.cpp:32 Confirmed
23 Out-of-bounds access linux-sgx [18] 2.11 init_global_object / global_init.c:186 Confirmed
24 Out-of-bounds access linux-sgx [18] 2.11 trts_ECALL / trts_ecall.cpp:259 Notified
25 Heap overflow signalapp [36] 1.13 main / app.c:412 NA
26 Heap overflow secure-analytics-sgx [89] 43576a2 extract_features / analytics_util.cpp:278 Notified
27 Heap overflow secure-analytics-sgx [89] 43576a2 main / analytics_util.cpp:278 Notified
28 Abort secure-analytics-sgx [89] 43576a2 startDTOblivTraining / dt_obliv.cpp:178 Notified
29 Abort secure-analytics-sgx [89] 43576a2 startDTOblivTesting / dt_obliv.cpp:252 Notified
30 Heap overflow secure-analytics-sgx [89] 43576a2 DTLearn_obliv / dt_obliv.cpp:76 Notified
31 Abort secure-analytics-sgx [89] 43576a2 startDTRandTraining /dt_rand.cpp:422 Notified
32 Abort secure-analytics-sgx [89] 43576a2 startDTRandTesting /dt_rand.cpp:506 Notified
33 Abort secure-analytics-sgx [89] 43576a2 startDTTesting /dt_sgx.cpp:138 Notified
34 Abort secure-analytics-sgx [89] 43576a2 startDTTraining /dt_sgx.cpp:68 Notified
35 Abort secure-analytics-sgx [89] 43576a2 startKMOblivTraining /km_obliv.cpp:349 Notified
36 Abort secure-analytics-sgx [89] 43576a2 startKMOblivTraining /km_obliv.cpp:351 Notified
37 Heap overflow secure-analytics-sgx [89] 43576a2 startKMOblivTraining /km_obliv.cpp:351 Notified
38 Abort secure-analytics-sgx [89] 43576a2 startKMOblivTraining /km_obliv.cpp:441 Notified
39 Heap overflow secure-analytics-sgx [89] 43576a2 startKMOblivTraining /km_obliv.cpp:441 Notified
40 Abort secure-analytics-sgx [89] 43576a2 startKMRandTraining /km_rand.cpp:202 Notified
41 Abort secure-analytics-sgx [89] 43576a2 startKMRandTraining /km_rand.cpp:305 Notified
42 Abort secure-analytics-sgx [89] 43576a2 test /km_sgx.cpp:150 Notified
43 Heap overflow secure-analytics-sgx [89] 43576a2 test /km_sgx.cpp:150 Notified
44 Abort secure-analytics-sgx [89] 43576a2 main /km_sgx.cpp:191 Notified
45 Heap overflow secure-analytics-sgx [89] 43576a2 startKMTraining /km_sgx.cpp:191 Notified
46 Abort secure-analytics-sgx [89] 43576a2 startKMTraining /km_sgx.cpp:198 Notified
47 Abort secure-analytics-sgx [89] 43576a2 startKMTraining /km_sgx.cpp:228 Notified
48 Abort secure-analytics-sgx [89] 43576a2 startKMTraining /km_sgx.cpp:236 Notified
49 Abort secure-analytics-sgx [89] 43576a2 startKMTraining /km_sgx.cpp:248 Notified
50 Abort secure-analytics-sgx [89] 43576a2 startKMTesting /km_sgx.cpp:281 Notified
50 Abort secure-analytics-sgx [89] 43576a2 startKMTesting /km_sgx.cpp:281 Notified
50 Heap overflow secure-analytics-sgx [89] 43576a2 closestCentroid /km_sgx.cpp:29 Notified
51 Heap overflow secure-analytics-sgx [89] 43576a2 EM /km_sgx.cpp:58 Notified
53 Abort secure-analytics-sgx [89] 43576a2 startNBOblivTesting /nb_obliv.cpp:133 Notified
54 Abort secure-analytics-sgx [89] 43576a2 startNBOblivTraining /nb_obliv.cpp:64 Notified
55 Abort secure-analytics-sgx [89] 43576a2 startNBRandTraining /nb_rand.cpp :36 Notified
56 Abort secure-analytics-sgx [89] 43576a2 startNBRandTesting /nb_rand.cpp:107 Notified
57 Abort secure-analytics-sgx [89] 43576a2 startNBRandTraining /nb_rand.cpp:36 Notified
58 Divide by zero secure-analytics-sgx [89] 43576a2 startNBRandTesting /nb_rand.cpp:98 Notified
59 Abort secure-analytics-sgx [89] 43576a2 startNBTesting /nb_sgx.cpp:127 Notified
60 Abort secure-analytics-sgx [89] 43576a2 startNBTraining /nb_sgx.cpp:70 Notified
61 Abort secure-analytics-sgx [89] 43576a2 initialize_NB /nbayes.cpp:17 Notified
62 Abort secure-analytics-sgx [89] 43576a2 initialize_NB /nbayes.cpp:26 Notified
63 Heap overflow webasm [53] 2281ac9 invoke /wa.cpp:2020 Confirmed
64 Abort webasm [53] 2281ac9 read_string /util.cpp:59 Confirmed
65 Null pointer access webasm [53] 2281ac9 read_string /util.cpp:59 Confirmed
66 Heap overflow webasm [53] 2281ac9 sgx_ecall_load_invoke_allInOne /Enclave_t.c:379 Confirmed
67 Heap overflow webasm [53] 2281ac9 interpret/ wa.cpp:1004 Confirmed
68 Heap overflow webasm [53] 2281ac9 acalloc/ util.cpp:87 Confirmed
69 Heap overflow webasm [53] 2281ac9 load_module/ wa.cpp:1810 Confirmed
70 Heap overflow webasm [53] 2281ac9 interpret/ wa.cpp:667 Confirmed
71 Heap overflow webasm [53] 2281ac9 interpret/ wa.cpp:996 Confirmed
73 Heap overflow webasm [53] 2281ac9 setup_call/ wa.cpp:617 Confirmed
74 Heap overflow webasm [53] 2281ac9 interpret/ wa.cpp:1067 Confirmed
75 Heap overflow webasm [53] 2281ac9 interpret/ wa.cpp:1006 Confirmed
76 Heap overflow webasm [53] 2281ac9 interpret/ wa.cpp:903 Confirmed
77 Heap overflow webasm [53] 2281ac9 interpret/wa.cpp:998 Confirmed
78 Heap overflow webasm [53] 2281ac9 interpret/wa.cpp:1011 Confirmed
79 Heap overflow webasm [53] 2281ac9 interpret/wa.cpp:992 Confirmed
80 Heap overflow webasm [53] 2281ac9 interpret/wa.cpp:1016 Confirmed

TABLE 6: List of bugs found by FUZZSGX

17

	Introduction
	Background
	Intel SGX
	Security Model

	Enclave Fuzzing Challenges
	Design
	FuzzSGX Runtime.
	FuzzSGX

	Implementation
	Evaluation
	Reported Bugs
	Runtime Benchmark
	FuzzSGX Seed Generation
	Fuzzing Benchmark
	Program Mutation Benchmark
	Case Studies

	Discussion
	Related Work
	Conclusion
	References
	Appendix
	Evaluation Dataset Selection Criteria
	Bug Report

