Low-Cost Privilege Separation with Compile Time
Compartmentalization for Embedded Systems

Arslan Khan, Dongyan Xu, Dave (Jing) Tian
{khan253, dxu, daveti}@purdue.edu
Purdue University

Abstract—Embedded systems are pervasive and find various
applications all around us. These systems run on low-power
microcontrollers with real-time constraints. Developers often
sacrifice security to meet these constraints by running the
entire software stack with the same privilege. Existing work
has utilized compartmentalization to mitigate the situation but
suffers from a high overhead due to extensive runtime checking
to achieve isolation between different compartments in the
system, resulting in a rare adoption. In this paper, we present
Compartmentalized Real-Time C (CRT-C), a low-cost compile-
time compartmentalization mechanism for embedded systems
to achieve privilege separation in a linear address space using
specialized programming language dialects. Each programming
dialect restricts the programming capabilities of a part of a
program, formalizing different compartments within the program.
CRT-C uses static analysis to identify various compartments
in firmware and realizes the least privilege in the system by
enforcing compartment-specific policies. We design and implement
a new compiler to compile CRT-C to generate compartmentalized
firmware that is ready to run on commodity embedded systems.
We evaluate CRT-C with two Real-Time Operating Systems
(RTOSs): FreeRTOS and Zephyr. Our evaluation shows that
CRT-C can provide compartmentalization to embedded systems
to thwart various attacks while incurring an average runtime
overhead of 2.63% and memory overhead of 1.75%. CRT-C
provides a practical solution to both retrofit legacy and secure
new applications for embedded systems.

I. INTRODUCTION

Embedded systems find applications in nearly every aspect of
computing. Unlike general-purpose personal computers, embed-
ded systems are resource-constrained and are generally used for
a specific task. Often, multiple embedded systems are interfaced
with each other to achieve some useful task, e.g., different
sensors within a drone or hundreds of ECUs within a vehicle.
Even though embedded systems are ubiquitous, the state of
embedded systems security paints a rather worrisome picture.
Developers often sacrifice security in favor of performance due
to the low resource constraint. For instance, embedded systems
are often programmed in a flat address space with no privilege
separation to avoid the cost of context switching. As a result,
any component in the system can freely access any resource
in the system, e.g., a user-space task can access any kernel
data structure or any device in the system. These poor security
practices leave a large attack surface in embedded systems,
as demonstrated by several attacks [S[]-[8]. For instance, a
compromised WiFi System-on-Chip (SoC) can be used to
achieve a full device takeover of a mobile phone remotely [19],
[20].

Compartmentalization [47]], [SO]], [65] is one of the coun-
termeasures for reducing the attack surface of a computing
system. It divides a monolithic system into multiple small
compartments, each of which is assigned a particular set of
resources. Existing work has tried to achieve compartmental-
ization in embedded systems using various techniques. Minion
[51] creates coarse-grained compartment views using program
analysis and clustering algorithms with the help of a memory
protection unit (MPU). M2MON [49] implements a Memory
Mapped I/O (MMIO) reference monitor for embedded systems
using a similar design as Minion. ACES [34] implements
developer-guided compartments using compiler instrumentation
and MPU.

Unfortunately, these systems suffer from the inevitable
runtime overhead caused by instrumentation and monitoring, as
shown in Furthermore, the memory protection hardware
employed by embedded systems, such as the MPU, provides a
limited number of protected regions and imposes restrictions
on the size and alignments of protected memory regions
[77], resulting in limited configurations and high memory
overhead [34]]. Due to the stringent resource constraint in
embedded systems, these overheads are not acceptable for
most applications, and thus these solutions were never able to
catch wide adoption. Moreover, some of the solutions require
an extensive amount of effort to port existing systems to their
frameworks. For instance, these solutions mandate to move
the system software stack from the privileged mode to the
unprivileged mode manually, requiring a non-trivial effort.

Similarly, memory-safe programming languages [46], [S5],
[60]], [67]], such as embedded Rust, can help reduce the
attack surface of embedded systems by proactively enforcing
developers to write code in a type-safe fashion. While these so-
lutions could result in lower overhead, adopting these solutions
require rewriting the application in a completely new language,
breaking compatibility with existing projects. More importantly,
these languages do not provide any compartmentalization
guarantees, as an unprivileged component can still access
privileged resources, making them susceptible to privilege
escalation attacks, etc.

In this paper, we present Compartmentalized Real-Time
C (CRT-C), a program analysis and programming language-
based compartmentalization technique for embedded systems.
CRT-C combines the features of compartmentalization and
language-based systems to achieve compartmentalization by
identifying different compartments in the system at compile-

time and enforcing a specialized programming dialect based on
the compartment type. Specifically, CRT-C utilizes program
analysis to ensure that different compartments are isolated at
the variable-level granularity. Each compartment in the system
follows different policies to achieve the least privilege in the
system. Instead of re-writing the whole application in a new
programming language, we provide tools to convert legacy C
code to CRT-C code in a semi-automatic fashion.

We design and implement the CRT-C compiler using
LLVM and apply CRT-C to two RTOSs, FreeRTOS [14]]
and Zephyr [25], demonstrating how CRT-C can help retrofit
existing systems. Our evaluation shows that CRT-C can
effectively avoid memory corruption and privilege escalation
issues in commodity systems. Furthermore, our evaluation
shows that CRT-C can eliminate known CVEs in these RTOSs
while incurring an average of 2.63% runtime overhead and
1.75% memory overhead. In summary, this paper makes the
following contributions:

o We propose CRT-C, a novel compile-time compartmental-
ization technique for embedded systems using specialized
programming dialects for separate compartments in the
system. CRT-C uses static program analysis and an
extended C type system to achieve this goal.

o We design and implement the CRT-C compiler that can
identify different compartments in the system and restrict
developers to the dedicated dialect of the corresponding
compartment for memory safety and privilege separation.
We provide tools to convert legacy C code to CRT-C
code in a semi-automatic fashion.

e Using CRT-C, we compartmentalize two RTOSs to evalu-
ate the efficacy and efficiency of CRT-C. Our evaluation
shows that CRT-C can defend against several vulnerabili-
ties and thwart known CVEs with compartmentalization
while incurring an average of 2.63% runtime overhead,
varying from 0.4% to 11.2%, and 1.75% memory overhead,
varying from 0.9% to 5.8%.

To further research on this topic, we have released the source
code for CRT-C.

II. BACKGROUND

A. Real-Time Operating Systems (RTOS)

Real-Time Operating Systems are operating systems that
schedule tasks in a deterministic manner. In an RTOS, given
the set of runnable tasks in the system a user can pre-determine
the schedule of tasks in the system. While RTOS schedules
tasks deterministically, there can be some variability in the
system called jitters, caused by various factors such as network
congestion, interrupt handling, etc. To minimize jitters, RTOSs
usually run in flat address space in embedded systems. In such
a configuration, the tasks or threads in the system are functions
that are directly linked with the RTOS code, both running
inside the same privileged mode. Popular examples include
FreeRTOS [14], Zephyr [25], NuttX [[17]], etc.

B. Compartmentalization

Compartmentalization is a design principle to divide a
monolithic software stack into various compartments. Each
compartment has its own set of resources, which can only be
accessed via the compartment. Modern processors provide
features such as memory management units and different
execution modes to achieve compartmentalization in a system.
We call compartmentalization using these hardware extensions,
Hardware-Based Compartmentalization. Existing systems have
employed various techniques to achieve compartmentalization
in embedded systems as shown in However, these
systems have not seen the same level of adoption because of
the low-resource constraints and high overhead incurred due
to hardware-based compartmentalization.

C. CheckedC

CheckedC [38] is a spatially safe dialect of C. Compared
to existing safe dialects, CheckedC provides memory safety
by adding extensions to C. Because of this design, every C
program is also a CheckedC program. CheckedC extends C
pointer types to provide three new safe pointer types that can be
used to access memory safely. This includes ptr, array_-
ptr and array_ptr_nt. ptr type is used for pointers
that do not allow any pointer arithmetic operations, whereas
array_ptr and array_ptr_nt allow pointer arithmetic.
Each pointer type contains sufficient checks to ensure that
there are no buffer overruns or null dereferences at runtime.
Additionally, CheckedC introduces the concept of checked and
unchecked scopes. CheckedC restricts programmers to utilize
only safe pointer types inside the checked scopes, whereas
inside unchecked scopes the weak C type system can be utilized.
By enforcing these restrictions on checked scopes, CheckedC
guarantees that "Code in checked scopes cannot be blamed
for spatial safety violations" [38]. For interoperability between
checked scopes and unchecked scopes, CheckedC introduces
the concept of bound-safe interfaces, with which programmers
can do sufficient checking at the boundary of checked and
unchecked scopes.

III. SECURITY MODEL

Threat Model. We consider the classical threat model for
operating systems, i.e., code running in user space, such as
user threads, and code from 3rd-party vendors, such as device
drivers, are untrusted and exposed to attacks directly. Attackers
aim to compromise the whole system by exploiting vulnera-
bilities in the untrusted code, e.g., via memory corruption to
achieve arbitrary code execution or privilege escalation within
the system. As a result, attackers could gain access to systems
resources that are not supposed to be accessed by default, such
as interrupt handlers, schedulers, MPU configurations, secret
keys, etc., due to the flat memory address space and running all
the code within the same privileged mode. For instance, a sensor
spoofing attack might exploit an integer overflow within the
device driver, which further triggers a buffer overflow and leads
to arbitrary code execution within the privilege mode. Ideally,
even if the device driver was compromised, the exploitation

https://github.com/purseclab/Pieces
https://github.com/purseclab/Pieces

Project Runtime Overhead = Memory Overhead Mechanism Granularity TCB Porting Effort
Minion [51] 6.13% N/A (Fragmentation) MPU Thread Level Small Mode Switch
M2MON [49] 8.85% 5.02% MPU Device Level Small Mode Switch
ACES [34] 13% 61% (Fragmentation) MPU +SFI Programmable Small Mode Switch
CRT-C 2.63% 1.75% Language Based Variable Level Medium Minimal*

TABLE I: Existing compartmentalization solutions: Mechanism describes the isolation technique used by the framework and Granularity
shows the smallest compartment achieved by the framework. Each project is evaluated on a different variant of the STM32F4 microcontroller.
(" Granularity is limited by the MPU functionality) (* Firmware needs a compatibility layer (See) to work with an RTOS.).

Code @
Converter = CRT-C P1
Compiler @
CIC++ c > i

Code

Compatibility Layer

Fig. 1: CRT-C workflow. Existing code can be converted to CRT-C
code using the compatibility layer to generate code in different
compartments (C), which are subjected to specific policies (P).

should be confined within itself, e.g., its own compartment,
without influencing other components within the system.

Trust Model. The system software or the RTOS, including
the scheduler, interrupt handlers, etc., and the bootstrap code
to start up the whole embedded system are considered part
of our Trusted Computing Base (TCB). We anticipate the
firmware (system software plus user-defined applications) to
be statically linked, i.e., it does not contain any dynamically
linked or shared libraries, which is a common practice for
embedded systems. We assume the availability of firmware
source code and a proper boot-up mechanism to ensure the boot-
time integrity of the firmware. We do not assume the availability
of hardware privilege separation (e.g., multiple MCU execution
modes) or memory protection hardware (e.g., MPU), which
further lowers the deployment requirements in the real world.
In a nutshell, CRT-C creates isolated compartments in the
firmware to confine the potential vulnerabilities and attacks
within a compartment without influencing other compartments
via isolating the code, data, and peripherals of all compartments.

Out-of-Scope. We do not aim to defend against local attacks,
e.g., attacks within a compartment during the runtime, which
have a number of different solutions, such as control flow
integrity (CFI) and data flow integrity (DFI). Instead, our goal is
to confine the attack within the compartment, preventing whole-
system compromise. We do not consider undefined behaviors
introduced by the embedded firmware, nor do we cover race
conditions bugs within the firmware. A clear and even formally-
verified specification might be needed to eliminate undefined
behaviors. Recent work on detecting race conditions [53]] could
be integrated if needed. Finally, both side-channel [56], [[61],
[69] and physical [26], [64], [[76] attacks are orthogonal to our
threat model, and thus outside the scope of this paper.

IV. OVERVIEW

CRT-C is a language-based compartmentalization solution
that uses program analysis to identify different compartments in
the system. Each compartment is subjected to different policies
which ensure strong isolation between different compartments.
In case CRT-C is not able to guarantee isolation, it either
instruments the program with runtime checks or points the user
to the offending instruction during compilation.

To facilitate deployment, CRT-C provides tools to convert
legacy programs to CRT-C programs. CRT-C includes an
RTOS-specific compatibility layer that transparently redirects
kernel APIs to safe interfaces. These interfaces ensure backward
compatibility with existing applications, provide sanitization
of input to the kernel, and maintain proper ownership transfer
of memory resources. The compatibility layer can be used
by the converted legacy code to safely use the legacy RTOS
system API. These tools enable developers to convert legacy
code to CRT-C code in a semi-automatic fashion. The CRT-C
compiler parses through the code to enforce compartment-based
policies in the system and generates the compartmentalized
firmware which can be run on a micro-controller, as shown in

V. DESIGN

We follow the classic system design principle of separating
the mechanism from the policy. We first present the different
compartments defined by CRT-C, followed by the policies
that achieve isolation and privilege separation among different
compartments. Lastly, we describe the mechanisms to achieve
these policies.

A. Compartments

A typical RTOS consists of various compartments, such
as the kernel, middleware, driver, etc., as shown in
However, due to the weak isolation implemented in these
systems, the compartment boundaries are usually blurred
between those compartments. Developers frequently access
objects across different compartments as the whole firmware
has the same privilege level. As a result, a user task can
access any device in the system. Instead, CRT-C uses program
language constraints to create different compartments in the
system. We first define the different compartments in the system
created by CRT-C. CRT-C categorizes the compartments into
three categories:

Fig. 2: A view of traditional RTOS: RTOS is divided into various
compartments, such as kernel (K), driver (D), threads (T), etc. However,
these compartments are weakly isolated from each other.

Kernel: We define the system software managing the system re-
sources as the kernel compartment. This includes the scheduler,
middleware, and low-level architecture-specific code.
Threads: Tasks or threads are the unit of execution in an
RTOS. For our purposes, we use the term threads for both
tasks and threads. The threads compartment consists of all the
threads in the firmware. Within the thread compartment, each
thread is contained within its compartment.

Device Drivers: The software stack responsible for managing
devices constitutes the device driver compartment, within which
every driver is kept within its compartment.

With well-defined compartments in the system, we assign
different capabilities to each type of compartment by defining
a different dialect for each compartment.

Kernel Dialect: As the kernel compartment consists of the
RTOS code, we include this compartment inside our TCB.
This is the highest privilege compartment in the system. Kernel
dialect is the closest to the normal C code, except that kernel
code cannot access 10 directly. In other words, kernel code is
not allowed to create or use hard-coded pointers for MMIO
access.

Thread Dialect: In CRT-C, threads in the system have the
least privilege in the system. Code in the thread compartment
can only access objects explicitly assigned to the particular
thread. Furthermore, the thread compartment is also not allowed
to create or use hard-coded pointers.

Device Drivers Dialect: CRT-C gives the same privilege level
to device drivers as threads. The only difference is that in
this compartment, code can manipulate IO directly. Moreover,
each device driver is associated with a physical device and
can manipulate only that particular device directly. CRT-C
provides mechanisms to associate a device with a driver at
compile time. Based on this association, the driver code can
create and access pointers to the IO regions that belong to the
device associated with the driver.

B. Policies

With well-defined compartments, we design different policies
that are enforced on each compartment. Using these policies
we can instantiate the specialized dialects mentioned above. We
derive our policies from classic compartmentalization models
[57], [68]] used by operating systems. These policies ensure
attributing the least privilege to each compartment in the system
and essentially provide a unique programming environment for
each compartment in the system.

Kernel Policies: As we consider the kernel a part of our TCB,
we do not enforce any restrictions on the kernel, which is free
to manage resources in any manner it wants. However, we
restrict the programming environment inside the kernel for 10
accesses. More specifically, we enforce the following policy
on the kernel compartment.

Policy 1: The kernel should not directly manipulate any
devices manually.
This ensures that only device drivers can manipulate their
respective devices and helps us establish a clear boundary
between the kernel and the device driver compartments. As the
kernel is still free to invoke any device driver API, this policy
does not affect the privilege of the kernel compartment. Code
manipulating devices directly is identified as a device driver.

Thread Policies: RTOS provides APIs to create threads, which
are specific to each application and do not go through the
same scrutiny as the kernel code. As a result, thread code is
more susceptible to introducing vulnerabilities. We enforce the
following policies on threads to ensure that they are the least
privileged compartment in the system:

Policy 2: Thread compartments should be memory-safe.
This policy is vital to achieving isolation and privilege
separation from other compartments in the system. This policy
guarantees that buffer overruns [[63]], [66]] are not able to escape
any policies enforced at compile-time.

Policy 3: Thread compartments should only access objects

assigned to the respective compartment.
This policy guarantees that no thread can access any objects
that belong to other compartments, e.g., kernel. Furthermore,
it ensures that no thread can access any objects that belong to
any other thread in the system. [Policy 2| and [Policy 3| work
together to ensure that no thread can access anything in the
system that is not assigned to it explicitly.

Policy 4: The thread compartments should not directly

manipulate any devices manually.
Similar to this policy ensures that any thread in
the system is not allowed to access any device in the system
directly. This policy, combined with [Policy 3| ensures that only
the device drivers have fine-grained control of all the devices
in the system.

Device Driver Policies: Device drivers have the same level of
privilege as threads, except that we allow them to manipulate
I/O directly. We enforce the following rules on the device
drivers.

Threads | Thread Thread Thread Thread
Policy 1 2 3 n
Kernel | Compatibility Kernel
Policy Layer

[. Y\
Driver Driver Driver Driver
Device | [- 1 .2 ... 3_ .. n__ |
Drivers - Ny YT
. 4-\\ E °E
Policy _.Q_ E “ O ‘ 5 9
L \ TITTTTIT /

Fig. 3: CRT-C enforces different policies based on the compartment.
Using these policies we can compartmentalize a firmware into different
privilege levels.

Policy 5: Each device driver should be only allowed to
manipulate devices assigned to them.
This policy is a relaxed version of [Policy 1| and [Policy 4]
Device drivers are free to manipulate MMIO regions directly.
However, in the absence of any device driver can
manipulate any device in the system, thus breaking isolation.
Instead, every device should be assigned to a single device
driver owner to maintain the least privilege for the driver.

Policy 6: Device drivers should be memory-safe.
Similar to the this policy ensures that device drivers
are not able to break the policies at runtime because of memory
safety violations.

shows the overview of an embedded system with our
policies enforced. CRT-C can create three different software
privilege levels in the system, with each privilege level confined
by its specific policies. Threads are only able to access the
objects allocated to them while maintaining isolation among
different threads. The kernel compartment is the only trusted
compartment in the system without direct access to devices.
The device driver compartments are in charge of all peripheral
devices. Each device driver can only access the device it owns.

C. Mechanisms

With the six policies confining and isolating different
compartments, we describe how CRT-C fulfills these policies
leveraging static analyses and CheckedC.

Policy 1: The kernel should not directly manipulate any devices
manually. To ensure policy 1, we need to discover all of the
IO accesses done within the firmware. Embedded systems
use MMIO to access peripherals. MMIO directly maps 10
devices into the same linear address space as memory. As
embedded systems usually do not employ virtual memory,
MMIO accesses use hard-coded pointers to a specific memory
address as shown in We call the pointers pointing
to MMIO addresses MMIO pointers. To discover all of the
IO accesses in the firmware, we need to find all the MMIO
pointers in the system.

Listing 1: A hard-coded pointer to access MMIO.

‘1 * (volatile unsigned int x) OxFE100000 = 0xO0;

To distinguish MMIO pointers from normal pointers, we can
refer back to to find the unique features of MMIO
pointers. Firstly, we note that the MMIO pointers have the
volatile qualifier and secondly, the pointer is created from a
hard-coded literal. The volatile qualifier tells the compiler that
the pointed memory may update between accesses and ensures
that the compiler does not optimize away any operations with
this pointer. The qualifier is necessary for the correct usage of
MMIO pointers, as IO memory can be updated asynchronously
from the device. We can use this qualifier as a heuristic to
find all MMIO pointers in the firmware. However, in C/C++,
it is valid to use the volatile qualifier on any variable. Such a
pass would wrongly classify normal pointers with volatile
qualifier as MMIO pointers.

Instead, we use the second heuristic, i.e., find all pointers
that use a hard-coded base address. However, this heuristic also
faces a problem as shown in The pointer p is created
using a hard-coded address so it will be classified as an MMIO
pointer based on the heuristic. However, the pointer alias
is created using the pointer p and therefore will escape our
analysis. Due to this Pointer Propagation problem, an MMIO
pointer can alias with other pointers in the system.

Listing 2: An MMIO pointer without using a hard-coded address.

1 volatile unsigned int x p = OxFE100000;
2 volatile unsigned int * alias = p;

Solution: To overcome these challenges, we design an MMIO
Discovery static analysis pass to find all MMIO pointers in
the system by walking the use-def chains for each pointer.
If a pointer is defined using a constant literal, the analysis
registers that pointer as an MMIO pointer. Observing that
MMIO pointers are rarely copied in embedded system firmware,
we restrict any copying of such pointers and reject any firmware
that copies MMIO pointers to avoid the pointer propagation
problem. With this restriction, we only go through the definition
sites of all permitted MMIO pointers to find all pointers in the
system, instead of parsing through all the pointers uses in the
code, to avoid the pointer aliasing problem.

The MMIO Discovery analysis takes in firmware code and
returns a set of MMIO addresses used by the firmware. For
Policy 1, we invoke this analysis with the kernel compartment,
resulting in the set K p, i.e., the set of all devices accessed by
the kernel compartment. To enforce Policy 1, we ensure that
the following condition holds:

Kp=o

i.e. the kernel compartment can neither create nor access
any MMIO pointers. In other words, if some code accesses
MMIOQ, it is treated as a device driver.

Policy 2: Thread compartments should be memory-safe. To
enforce Policy 2, we need to identify all the threads in the

| Legacy CFG

Unsafe Code
|:| Safe Code
:l Trusted Code
= Legal Edge
= lllegal Edge

Compatibility
Layer

i CRT-C CFG

Fig. 4: Code conversion for thread compartment. T nodes are basic

blocks in the thread compartment, while K nodes are kernel code.

The code is incrementally converted to checked code.

system and ensure they are restricted to a memory-safe
programming environment. However, each RTOS has its
specific way of creating new threads. For instance, some
RTOSs provide a thread creation API that takes in the entry
point of the thread as an input argument, whereas some
RTOSs allow creation of threads statically by placing the
initialization information, including the thread entry point, in
a linker section. The RTOS parses this information at boot
time to create threads.

Solution: We design an RTOS-specific static analysis pass
that identifies different threads in a firmware based on the
thread creation APIs implemented by the RTOS. The Thread
Discovery analysis walks the use-def chain on the thread
creation API and the thread entry argument to extract all
threads present in the firmware. Some RTOSs, like Zephyr,
can create threads statically by placing thread definitions in
a separate linker section. In this case, the Thread Discovery
analysis parses the definition of these static threads to extract all
of the threads in the firmware. The Thread Discovery analysis

works on firmware level and returns 7’4, the set of all threads
NThreads

in the system, i.e., Ty = t; where t; is an individual
thread in the system, and %_;h,«eads is the total number of
threads in the system.

Once we have identified all the threads in the system, we
enforce the compiler to compile thread code in a memory-safe
environment. More specifically, we enforce the code in T4 to
be written in CheckedC’s checked dialect. To achieve this we
enforce the safety restriction on the thread entry function,
as extracted by Thread Discovery and developers have to
convert all of the called functions from the top-level function
to CheckedC code as well, since in CheckedC checked code
cannot call unchecked code.

To allow thread code to call into kernel code we provide a
Compatibility layer, which is a bridge between thread code and
kernel code providing a bounds-safe interface and checking any
parameters passed between the two compartments. These safety
restrictions propagate until the code calls into the Compatibility
layer of the RTOS. Consequently, all functions in 7'y are

checked. This restriction ensures that all code belonging to 74
is memory-safe as CheckedC guarantees that code written in
checked regions is free of any spatial memory-safety issues
while maintaining maximum backward compatibility.
shows the conversion of legacy C/C++ firmware to CRT-C. The
CRT-C compiler catches all the illegal calls and restricts the
programmer to use the correct compartmentalization required
by the enforced policies.

Policy 3: Thread compartments should only access objects
assigned to the respective compartment. As mentioned before,
the implication of Policy 3 is two-fold. Firstly, no thread should
be able to access kernel objects, a.k.a, Kernel-Thread Isolation.
Secondly, no thread should be able to access objects belonging
to other threads, a.k.a, Inter-Thread Isolation.

Solution: To achieve Kernel-Thread Isolation, we find all of the
threads in the system using Thread Discovery. For each thread
t;, we use forward slicing [[73]] based on inter-procedural value
flow analysis [[70] to find the set of objects directly accessed
by the thread. Furthermore, we use an off-the-shelf context and
field sensitive Points-to Analysis [36]], [37], [39] to find the
set of objects accessed indirectly by each thread. We combine
the objects obtained from these analyses to obtain the set of
objects associated with the thread ¢o,. We perform a union of
objects accessed by all the threads to find Tp, i.e., the set of
all objects in the thread compartment.

NTotalThreads
To = U to,
i=1
Using a similar analysis, we find K, the set of objects accessed
by the kernel. For Kernel-Thread isolation, we ensure the
following condition holds:

ToNKp =9

i.e., we take an intersection to ensure that threads do not access
any kernel objects. To achieve Inter-Thread Isolation, we have
to guarantee that all of the threads exclusively access their
own resources. Hence, we ensure that the following condition
holds:

Vi,j € TL|Z #jatoz’ mtOj =9

i.e., no thread in the system can access objects assigned to
other threads.

Policy 4: Thread compartment should not directly manipulate

any devices manually. We achieve Policy 4 using the same

analysis as Policy 3. Using the MMIO Discovery analysis on
the thread compartment obtained by the Thread Discovery
analysis, we can get Tp, the set of all devices accessed by all
the thread compartments. To guarantee Policy 4, we ensure
that the following condition holds:

Tph =@

i.e., the thread compartment is not able to create or access
MMIO pointers.

Policy 5: Each device driver should be only allowed to manip-
ulate devices assigned to them. To ensure policy 5, we need to
identify all device drivers in the system and ensure that these
device drivers are only able to access a certain device. In other
words, we need to 1) find all the MMIO regions are accessed by
a device driver, and 2) associate MMIO regions with the device
configuration of the platform. For 1), MMIO Discovery can be
used to find the MMIO pointers in the system. However, it does
not tell anything about the MMIO address the MMIO pointer
is pointing to. For 2), there is no easy way to associate an
MMIO region with a device during compilation, as embedded
system development platforms have different memory and
device configuration. This configuration is decided by the SoC
vendor during design and the vendor supplies this information
in the datasheet or the user manual for the particular platform.
Solution: To find MMIO regions accessed by the firmware we
design an MMIO Points-To Analysis. As shown in the
address pointed by the pointer is hard-coded. Hence, we can
find the address pointed by the MMIO pointer. This analysis
goes through the MMIO pointer definitions. Using constant
propagation [72]], we can find the base addresses of all MMIO
pointers except where the base address is offset by a variable.

Listing 3: An expanded macro to access MMIO with a variable offset
in an embedded firmware.

‘ 1 *(volatile uint x) (0xFE1l0 + offset) =

shows an example of such code. Here we can
statically determine the base address OxFE100000, however,

it is generally an intractable problem to determine the value
of offset at compile time. Furthermore, the offset variable
could be local or could be passed in as a function argument.

0x0; ‘

Listing 4: Constraining the offset variable to contain MMIO access
within a fixed range.

1 if (offset < 0x10) {
2 * (volatile uint «)
3 1}

(OxFE10 + offset) = 0x0;

While determining the offset at compile time is generally
intractable, in some cases, it is possible to find the value of the
offset variable. shows one such pattern. The value
of the variable offset is restricted by the check at line 1.
Hence, of fset’s value can range from 0 to 0x10 at line 3.
Although we cannot tell the exact value of the MMIO access at
line 3, we can conservatively determine that the MMIO access
is in the range of [0xFE10, 0xFE20]. Hence, we enforce
the following restriction on firmwares:

"Policy 5a:All MMIO Pointer base addresses should be
restricted within a fixed range at compile-time".

To find the range of MMIO accesses, we design a conser-
vative inter-procedural Value-Range Analysis (VRA) [1]], [43],
that gives the range of a particular variable at compile-time as
shown in Algorithm E} First, we backtrack from the MMIO
access instruction to the function entry point to find all the
paths that result in the MMIO access. While walking the edge
between basic blocks of a path, we collect the constraints
required for reaching the successor. Using this information, we

Algorithm 1 Value Range Analysis

Result: range
Function getValueRange (value, known, instruction,ic) :
ic+ic+1
if value € known then
| range = knownlvalue]
else if ic > ICp; 4 x then
| range = knownlvalue]
end
else if type(op) == Argument then
foreach callsite € Callsites(func) do
| known < getValueRange(value, callsite, known, ic)
end

range

end

else

foreach path € func do

if instruction € path then
/+xCollect constraints that must
satisfy to reach the instructionx/

path.constraints < collect(path,instruction)
/+xGet range of values based on the
extracted constraintsx/

known <« solve(instruction, path.constraints)
/*Propagate the newly found range
information to known rangesx*/

foreach range € Ranges do

foreach path.constraints do

| propagate(range, known)

end

end

end
foreach operand € Instruction do
‘ known <« getValueRange(op, known, instruction, ic)

end
range < solve(instruction, op, known)

end
return

can find possible ranges for the target value and instruction.
This process is done iteratively until either we have ranges for
all the operands for the target instruction, or the iteration depth
exceeds its budget. If we run into a function argument, we go
through all call sites and construct a range to see if all call
sites are invoked using a concrete range. Based on the target
instruction, we calculate the final range. If the VRA can give
a fixed range of the offset variable, we register all the possible
MMIO regions that can be accessed with the returned range,
with the compartment. Otherwise, CRT-C stops the compilation
and points out the offending instruction to developers.

MMIO Region-Device Association: In order to associate the
MMIO regions to actual devices CRT-C utilizes the ARM
CMSIS System View Description (SVD) [21]], which describes
information about the platform, such as the base address,
interrupt line assignments, and configuration for each device
on a platform. We parse the SVD of the target platform to
associate memory regions with different devices.

Driver Association: After MMIO Region-Device Association,
we know the set of devices accessed by each compartment. In
the case of two translation units accessing the same device,
we need to associate a device with one of them. To this end,
we design heuristic-based associations, including a frequency-
based association or pattern matching. For frequency-based
association, we regard the translation unit with the highest

Listing 5: Global variable sharing using attribute based tagging.

1 OWNER (taskZA, taskB) QueueHandle_t x;

number of accesses as the owner and emit errors regarding the
rest of the accesses, while pattern matching matches the device
name with the directory hierarchy of the translation unit to
establish an association.

Using Driver Association, we can get d;, the set of devices
accessed by the device driver dd; and nppjyers, the total
number of drivers in the firmware. We ensure the following

condition holds to enforce and 5a:

VZ,] € an’uers‘i ?é j7d7 ﬂd] =J

i.e. for all drivers dd; in the system, no more than one driver
can manipulate the same device.

Policy 6: Device drivers should be memory-safe. To enforce
this policy, we need to identify all drivers in the system. Fortu-
nately, with MMIO Points-To Analysis and Device Association
Analysis we have already identified all the drivers in the system,
the compartment D:

N Drivers

D= dd;
i=1

Similarly to we enforce that all device drivers must
be written in a checked region.

D. Legacy systems adaption:

CRT-C enforces a strict set of rules on firmwares. However,
in some cases, legacy firmwares may not be able to adhere
to these rules. Furthermore, there exist some edge cases that
cannot be captured by the mechanisms discussed. Therefore,
to secure legacy systems, we provide the following extensions
to CRT-C.

Object Sharing. Policy 3 strictly prohibits any sharing of
objects. However, in real-world systems threads might need
to share objects among themselves. Furthermore, the kernel
might need to share objects with userspace threads. To this end,
CRT-C provides support for both explicitly sharing objects
among threads and between kernel and thread.
Kernel-Thread Sharing: CRT-C provides a new type qualifier
"userval". Kernel developers can annotate objects that are
shared with user threads and device drivers to explicitly allow
object sharing.

Inter-Thread Sharing: CRT-C enables Inter-Thread object
sharing using two mechanisms: 1) Attribute-based sharing
and 2) Q-Accessors. For 1), CRT-C provides "OWNER"
attribute to annotate different owners. The attribute takes a
comma-separated string of threads that can access the object.
Developers can use the "OWNER" attribute to explicitly assign
objects to threads. shows the usage of the attribute.
The variable x is shared between TaskZA and TaskB. Q-
Accessors are compile-time generated artifacts that allow access

to a shared object and are made the owner of the object,
allowing CRT-C to prove the condition required for Policy
3. Q-Accessors can implement different sharing policies and
by-default grant access to all threads in the system.

These sharing mechanisms ensure that all of the object
sharing among compartments is explicit and any compartment
cannot access any resource in the system that is not explicitly
assigned to them.

Dynamic Object Tracking. CRT-C uses a conservative points-
to analysis to track indirect accesses to objects at compile time.
However, this analysis is not sound in general. For instance,
dynamically allocated objects may escape this analysis as they
are not created at compile time. To cater to this limitation,
CRT-C adds runtime checks in the compatibility layer for
ownership tracking. More specifically, CRT-C places all the
objects in a separate section for each identified compartment,
such as kernel, threads, etc. The compatibility layer checks all
references passed to a compartment. If a resource is passed
across a compartment, the compatibility layer throws a runtime
error. Furthermore, as restricted compartments cannot create
new objects within a checked scope, they use the compatibility
layer to create new objects. The compatibility layer keeps track
of each dynamically allocated object using an ownership map
to ensure isolation among different compartments. As Policy
3 requires that any sharing between two threads should be
explicit, the compatibility layer checks the resources passed
and throws a runtime error if a resource is shared implicitly.
We evaluate the soundness of these checks in
External Devices. The MMIO discovery enables us to find
all the devices interfaced using MMIO. However, embedded
systems also use different external buses, such as SPI, 12C, etc.
Code accessing a device behind an external bus can escape
the MMIO discovery analysis, as the devices behind a bus
can be accessed without any MMIO access using the bus
controller driver. To this end, we design a key-based ownership
model to associate devices behind the bus with a device driver.
External device drivers have to ask for a device key from the
bus controller driver before accessing a device during runtime,
using allocate_dev_bus APL If the queried device is not
owned by any device driver, the bus controller generates a
fresh key for the device and returns the key to the external
device driver. For future interactions with the external device,
the external device drivers must provide the bus controller
with the device key to gain access to the device. CRT-C
uses allocate_dev_bus API to statically obtain users for
devices behind an external bus, differentiating such device
drivers from the rest of the RTOS.

Explicit Driver Association. CRT-C uses some heuristics to
associate devices with different drivers in the system. If the
association does not result in the desired association, we also
enable users to explicitly associate devices with drivers. We
extend SVD nodes to add a new custom attribute "driver"
to the node which can explicitly associate a device with a
device driver as shown in While parsing the SVD,
if we find explicit device ownership using the "driver"
attribute, we assign the ownership of the device without any

Listing 1 SVD peripheral node for a peripheral.

<peripheral>
<name> UARTO </name>
<driver> uart.c </driver> ...

LTO Pass —J []

TITTTTTT

*.0 bin.o

clang Id.lid

(ThinLTO)

Fig. 5: Compilation and Analysis pipeline for CRT-C.

heuristics.

VI. IMPLEMENTATION

We implement CRT-C by extending the LLVM/clang [58]]
infrastructure. shows the implementation pipeline. We
configure clang to emit code with ThinLTO [23]] metadata,
which ensures that the input sections are placed properly in the
output binary. With the ThinLTO metadata, we link the files into
the final firmware bitcode. We ensure that the firmware follows

all the policies by implementing a link-time optimization pass.

If the firmware passes the analyses, CRT-C emits the final
binary object for the target, which can be run on the physical
hardware. Otherwise, the compiler generates error messages
regarding the offending instruction in the firmware.

clang. We use CheckedC clang [16] as the initial point for
our implementation. We extend clang to understand the type
information added by CRT-C, which is written to the bitcode
file and can be processed using the LLVM LTO pass later.
We extend CheckedC to transmit information about checked
regions to the LLVM IR bitcode helping us to enforce the
policies in the LTO pass.

LTO Pass. We modify the entire compilation pipeline to convey
the type and metadata information from source code to bitcode
and implement the major analyses in an LTO pass. This pass is
responsible for Inter-Thread isolation, Kernel-Thread isolation,
and device driver-related isolation. We utilize Static Value Flow
(SVF) [70] for the points-to analysis.

Compatibility Layer. The compatibility layer consists of
two parts: 1) implementation of bounds-safe interfaces for
kernel APIs, and 2) a wrapper header [24] that redirects the
legacy functions to call the bounds-safe interface using macro
redirection. Using the compatibility layer and the 3C tool
[3] we can port existing applications to CRT-C code in a
semi-automatic manner. shows the "diff" between
CRT-C and the normal C version of a FreeRTOS task. The
only difference is in line 1, where the pointer type is modified.
All the kernel APIs are called with the same prototype and
transparently redirected to the bounds-safe version of the API
using macro redirection. shows the SLOC for CRT-C.

Component [SLOC
LTO Pass 23K
Compatibility Layer (FreeRTOS) 382
Compatibility Layer (Zephyr) 182

TABLE II: SLOC for different components of CRT-C. The compati-
bility layer is specific to the RTOS.

Listing 6: Diff between safe and unsafe version of QueueSendTask.

1 >> static void QueueSendTask (ptr<void> pv)
1 << static void QueueSendTask (void * pv)

VII. EVALUATION

We evaluate CRT-C on two RTOSs: FreeRTOS [30] and
Zephyr [25] using the STM32F407G-DISCOVERY evaluation
board. We first evaluate the security guarantees of CRT-C,
followed by case studies of FreeRTOS and Zephyr. We also
demonstrate the memory and performance overhead incurred
by CRT-C. Lastly, we provide implementation overhead to
gauge the effort to adapt CRT-C with legacy code.

A. Security Evaluation

We evaluate the security guarantees provided by CRT-C

by examining various common vulnerabilities in embedded
systems with the help of CRT-C.
Buffer Overflow: Memory-unsafe programming languages,
like C/C++, allow direct manipulation of memory buffers
using pointers. If a buffer is indexed without proper checking,
an attacker can control the unchecked index to manipulate
arbitrary program memory resulting in attacks such as malicious
code execution. CRT-C uses CheckedC’s bounds checking for
avoiding buffer overflows as CRT-C enforces that all restricted
compartment (i.e., thread and driver) code should be written
in a checked scope. If a buffer overflow can be detected at
compile time, the compiler throws a compilation error. For
instance, consider the following code:

1 char buf checked[17]; buf[17] =0;

As the size of the buffer is 17 bytes, the access to buf byte
18 is outside the bounds of the buffer. When compiled, the
compiler throws the following compile-time error:

1 error: out-of-bounds memory access

buf[17] =0;

If the index cannot be determined at compile-time, e.g.,

1 buf[i] =0;

CRT-C compiles the code and instruments the access with
runtime checks. A runtime error is thrown if the buffer is
accessed outside the bounds.

Privilege Escalation: An attacker can exploit vulnerabilities in
the system to manipulate privileged resources used by the
kernel to conduct privilege escalation attacks. As CRT-C
considers the kernel compartment part of its TCB, we define
privilege escalation as accessing privileged resources from
the thread and the driver compartment. More specifically,

attackers try to access different resources across restricted
compartments (thread and drivers). For instance, we pass
a kernel resource, pxCurrentTCB, to a user thread. The
FreeRTOS kernel uses this variable to keep track of the running
thread. A malicious thread can modify the pxCurrent TCB
and call vTaskDelay to suspend the rest of the threads in
the system and unfairly monopolize CPU time. Fortunately,
CRT-C disallows access to this variable using type safety and
static analyses. More specifically, the compiler would reject
unsafe type accessing the pxCurrent TCB variable, resulting
in the following error:

1 error: global variable used in a checked
2 scope must be safe.

Even if the compatibility layer exposes the privileged
resource as a safe variable or the kernel chooses to use a
safe type for privileged resources, CRT-C compiler detects
that different compartments are sharing resources implicitly
and terminates the compilation by throwing the following error:

1 error:main accesses kernel var:x/tasks.c:343

The error points to the definition of the pxCurrent TCB
variable. Lastly, if the kernel tries to pass its privileged resource
as a thread argument, the compatibility layer checks throw a
runtime error and halt execution. The compatibility layer and
compile-time checks ensure that a compartment is not able to
access any resource it does not own.

Race Condition: If the firmware accesses a global resource
without synchronization primitives, an attacker can achieve
malicious effects by exploiting race conditions vulnerabilities,
such as Time-Of-Check-To-Time-Of-Use (TOCTTOU). CRT-C
currently does not enforce any protection against race condition
attacks. However, the Q-Accessor mechanism can implicitly
be used to synchronize access to shared objects.

Format String: Format string attack uses a malicious format
specifier string to access arbitrary memory locations during
the interpretation of the format string specifiers to access
and even write to arbitrary memory locations. To this end,
CRT-C does not allow the usage of format specifier functions.
More specifically, CRT-C does not allow the usage of variadic
function, i.e. function that takes in a variable number of
arguments. For instance:

1 printf ("Test");

results in:

1 error: cannot use a variable arguments
2 function.

To overcome this limitation, we provide substitute functions
in the compatibility layer to variadic functions. For instance,
we provide printChar, printInt, etc. to provide similar
functionality as printf.

Malformed Pointer Access: As mentioned earlier, memory-
unsafe languages allow direct manipulation of memory using
pointers. As the correct usage of the pointers is left to the
programmer, a pointer could be uninitialized, null, or dangling.

A malformed pointer could point to memory belonging to some
other compartment and can result in arbitrary memory access.
To this end, CRT-C mandates an initializer for the constrained
compartment pointers. For instance, compiling the listed code:

‘ 1 ptr<int> tmp; ‘

results in the following error:

‘1 error: variable 'tmp' must have initializer.‘

If we initialize the variable with a NULL initializer, the
firmware passes the compile-time check and CRT-C instru-
ments the code with a null check for runtime protection.

B. Case Studies:

FreeRTOS. FreeRTOS implements various data structures
to help application development, such as queues [28]] and
stream buffers [29]. To allocate such a buffer, a user
can request the size of the particular data structure.
shows the API used for creating a stream buffer. The
parameter size[ﬂ is used to specify the size of the buffer.
However, as disclosed in CVE-2021-31571 [10] and CVE-
2021-31572 [11]], if the size requested is large, it can wrap
around before the allocation request as the API increases the
allocation request to maintain the buffer metadata, as shown in
Hence, an integer overflow will result in allocated
memory less than the destination type. The usage of such a
buffer can result in unexpected behavior such as a crash or
arbitrary code execution.

Listing 7: Stream Buffer Creation API implemented in FreeRTOS.

1 StreamBufferHandle_t
2 xStreamBufferCreate (size_t size,
3 size_t triggerlvl);

Listing 8: Allocation of buffer metadata is allocated with the buffer.

1 allocated = (uint8_t x) pvPortMalloc
2 (size + sizeof(StreamBuffer t));

Using CRT-C, we move the stream buffer utility into
the thread compartment forcing it to use the compatibility
layer, which treats the arguments and return values as unsafe
values and does the appropriate checking including NULL and
buffer overrun checking. Once the buffer is allocated, it carries
the bounds information with it, eliminating the two CVEs. A
runtime assertion will be triggered if during a memory copy
the destination and source sizes do not match.

Zephyr. Zephyr has a shell subsystem that implements a
command-line interface to take inputs from the user. However,
as disclosed in CVE-2017-14202 [9], the shell implementation
does not protect against buffer overruns. It uses a history buffer
to save past commands. SHELL_HISTORY_DEFINE is used
to define the history buffer as shown in It takes in the
name of the shell, the size of the commands (block_size)
and the number of past commands saved (block_count)

Variable renamed from xBufferSizeBytes for brevity.

10

as shown in In the Zephyr shell, the configuration
parameter, CONFIG_SHELL_CMD_BUFF_SIZE is used to

configure block_size and is used in the code for check-
ing input size sanitization as well. However, in the buggy
version, instead of CONFIG_ SHELL_CMD_ BUFF_SIZE, a
hard-coded value of 128 is used to allocate the buffer as shown
in As the CONFIG_SHELL_CMD_BUFF_SIZE
is configurable, in case CONFIG_SHELL_CMD_BUFF_SIZE
is set greater than 128, saving the current command to the
history buffer causes a buffer overflow, allowing a serial or
telnet-connected user to cause a crash, possibly with arbitrary
code execution.

Listing 9: Macro used to define the shell history buffer in the Zephyr
Shell.

1 #define SHELL_HISTORY_DEFINE (_name,
2 block_size, block_count)

Listing 10: Invocation of SHELL_HISTORY_DEFINE in the buggy
version of the Zephyr shell.

1 SHELL_HISTORY_DEFINE (_name, 128, 8)

Using CRT-C, we move the shell from the kernel to the thread
component. Since this compartmentalized shell is subjected
to the thread policies, all index-able buffers have bounds
information. Furthermore, we explicitly check the results in
the compatibility layer for any allocations. Lastly, the memcpy
used in checked regions is bounds-aware and triggers a runtime
exception if the copy operation results in a buffer overflow
which avoids the root cause of CVE-2017-14202 by default.

C. Overhead Evaluation

We evaluate different types of overhead incurred by CRT-C
in this section. Our evaluation dataset is categorized into math,
device, and Inter-Process Communication (IPC) applications.
We prefix the application name with the host RTOS, i.e., F
for FreeRTOS and Z for Zephyr. Math applications include
Compression (Z-COMP) and Integer (F-INT). Device appli-
cations include Console (Z-CNSL), Echo (Z-ECHO), Thread
Flash (Z-THFL), FatFS-uSD (F-FAT), and Co-routine Flash
(F-COFL). Lastly, IPC applications include Stream Buffer
(F-SBUF), Queue Set (F-QSET), and Recursive Mutex (F-
RECM). Further details about our dataset are given in[Section B]
We show the memory and performance overhead incurred by
CRT-C on the evaluation dataset, followed by implementation
overhead to evaluate the porting effort for existing applications.
Memory Overhead. We evaluate the memory overhead
incurred by analyzing different sections in a binary and the
number of dynamic objects utilized by the firmware. We
establish the original C/C++ code as the baseline against
CRT-C code. We present the overhead seen in code memory
(Text), initialized data memory (Data), and uninitialized data
memory (BSS).

shows the memory overhead for different appli-
cations. CRT-C outperforms existing systems (as shown in

in terms of memory overhead by incurring only an
average overhead of 1.75% for all applications. CRT-C imposes

11

@BSS oData mText

O MNWrrOIO N

Device

Math

Fig. 6: Memory overhead incurred by using CRT-C. Y-axis shows
the percentage increase, while X-axis shows the application.

12 Math | Device , IPC
10 I I 3
8 | | ’
6 I .
4 1 I ﬁ
2 | | ﬂ' ’ Ea
0 @ Pl .
& <
o®<2 2 %% cf\o %g\/((@ Q<§\/ S Q’Q{o@@

Fig. 7: Number of dynamic objects used by each application. Y-axis
shows the number of objects, while X-axis shows the application.

minimum overhead by avoiding the usage of hardware memory
protection, such as MPU, resulting in zero fragmentation
overhead. The main overhead is seen in the text section and
BSS section caused by the runtime instrumentation (bounds
checking) and the ownership tracking data structures in the
compatibility layer. The modified external bus controller drivers
also incur overhead in the BSS section to keep track of
external device ownership. For math applications, compression
demo incurs the highest overhead of 5.81%. For device
applications, console incurs the highest overhead of 4.5%.
For IPC applications, both Recursive Mutex and Stream Buffer
incur an overhead of 1.1%.

shows the number of dynamic objects used by each
application. For each dynamic object, we create a wrapper
object that is passed to the calling function. Therefore, the
wrapper object is the overhead incurred for dynamic objects.
On ARMvV7-M, the size of the wrapper object is 12 bytes.
Math applications do not use any dynamic objects. For Device
applications, the FatFS-uSD and Coroutine Flash applications
utilize dynamic objects. IPC applications make heavy use
of dynamic objects with the Queue Set application using 11
dynamic objects, resulting in 132 bytes overhead. Note that,
Zephyr allows the static creation of objects, such as threads,
and most applications default to using this mechanism. Due
to this reason, zephyr applications show zero dynamic objects
overhead.

?8 Malhl Device I IPC ggg Mathl Device I IPC
60 1 1 300 ! .
50 ! ! 250 ! !
40 1 1 200 1 1
30 1 1 150 ! !
%8 1 1 100 HI H 1
0 Ann_-fNoaa u 58 B ﬂu -
= =
L5g0optespE t5gogiips
STEOREEQRDIE Sp&ogvQ0dy
SLOBTULOpgr O QmiuUeaTa
NNy N oW NN R Wwowow

(a) Number of Compatibility Layer (b) Number of runtime checks.

calls.

Fig. 8: Performance overhead sources for evaluated application.

12

10 BObject Tracking

@ [nstrumentation

_%O oN A~ O ®
Q
47,03

Device
Fig. 9: Execution overhead incurred by using CRT-C. Y-axis shows
the percentage increase, while X-axis shows the application.

Performance Overhead. We evaluate the performance over-
head incurred by CRT-C by comparing the time taken to
establish the C/C++ native code as the baseline against CRT-C
code for different applications. For both Zephyr and FreeRTOS,
we used ARM Systick [22] timer to benchmark the execution
times. For Zephyr, existing timing functions [18]] were used,
whereas, for FreeRTOS, we implemented our benchmarking
framework that works similarly to Zephyr timing functions.

CRT-C’s performance overhead is mainly incurred by the
runtime checks instrumented by CRT-C, the checking in the
compatibility layer for input sanitization and object tracking.
To this end, we statically count the number of calls to the
compatibility layer and the number of runtime checks added
by CRT-C, as shown in FatFS-uSD had the largest
amount of instrumentation, i.e., 134 checks, as it extensively
uses pointers. IPC applications issue the highest number of
compatibility layer calls, with Queue Set making compatibility
layer calls.

We break down the performance overhead into object
tracking and instrumentation overhead. The object tracking
overhead is the time spent by CRT-C for tracking ownership of
dynamically created objects, whereas instrumentation overhead
stems from CRT-C bounds checking and calls to the compati-
bility layer. shows the runtime overhead obtained
using the benchmarking framework. The IPC applications
incur the largest runtime overhead, as they extensively use

12

100
mRuntime Ownership Errors

ORTOS Porting Errors B
@ Compatiblity Errors]
50 BOPointer Errors *‘
H D g I ‘WAN
R K @) ~ X QD
@ N 57 X \3\ Q<< \5 q><</ O
O« O\ QXK
48 mc’ S S FEE
Math De\'/ice IPC

Fig. 10: Compilation resolutions. Y-axis shows the number of
compilation resolutions, while X-axis shows the application.

the compatibility layer and dynamic objects. Among the IPC
applications, the Queue Set application incurs the highest
overhead, where 51% of the overhead is contributed from
object tracking, as the Queue Set application uses the highest
number of dynamic objects as shown in Device
applications show a moderate overhead. FatFS-uSD incurs
the highest overhead in this set. While the FatFS-uSD does
not extensively use dynamic objects, shows that this
application has the highest number of runtime checks. For math
applications, we see a low overhead. Based on our performance
overhead evaluation, to achieve a low overhead, applications
should use static objects and minimize the usage of pointers
and the compatibility layer.

Implementation Overhead. CRT-C provides a semi-automatic
mechanism to compartmentalize legacy embedded systems.
Most of the work is automated using static analyses. If user
intervention is required, CRT-C throws an error and points to
the violating instructions to help users adapt existing firmware
to CRT-C. These errors can be categorized into three main
categories: RTOS Porting Errors, Compatibility Errors, and
Pointer Errors. RTOS porting errors are raised during an initial
port of an RTOS, such as unsafe drivers, illegal usage of MMIO
pointers, etc. Compatibility errors arise when applications try
to directly call kernel APIs. Lastly, pointer errors raise when
safe code tries to use raw/unsafe pointers. Compatibility and
pointer errors are dependent on applications, whereas RTOS
porting errors depend on the RTOS only.

[Figure 0] quantitively estimates the implementation overhead
for each application. Queue Set application raised the highest
number of errors, as it made several calls to the kernel.
Furthermore, porting Zephyr raised more errors compared to
FreeRTOS. Lastly, we did not see any runtime ownership errors
for the evaluated applications. Based on our experience, we
conjecture that CRT-C users can port an existing RTOS and
application to CRT-C in 1-3 man-days. Furthermore, with each
application, this time should go down, as newer applications
may use services from already ported applications. We describe

case studies about the detailed porting process in

VIII. DISCUSSION

Implications of CRT-C Assumptions: As mentioned in
CRT-C makes some assumptions about the input
firmware. Without those assumptions, an attacker might be
able to bypass CRT-C guarantees. For instance, an undefined
behavior such as integer overflow can result in unsoundness of
the CRT-C analyses. On the other hand, the hardware-enforced
compartmentalization systems, listed in[Table 1| will most likely
result in a runtime protection error El Fortunately, each attack
vector can be mitigated using existing defenses. The defenses
to each of our assumptions are orthogonal to this work. For
instance, undefined behavior sanitizer (UBSAN) can be used to
find integer/floating point overflows in the firmware. Similarly,
existing tools [53] can be used to find data races in firmwares.
CRT-C adaption: We design CRT-C with adaption to legacy
code in mind. As shown in CRT-C adaption is
categorized into RTOS-specific and application-specific porting.
The RTOS-specific porting includes porting the device drivers.
Depending on the application, CRT-C users can incrementally
port the device drivers for an RTOS. Similarly, application-
specific porting requires, 1) converting the code to the safe
dialect, and 2) providing safe interfaces for the RTOS. For 1)
the 3C tool [3]] can assist in the conversion of unsafe code to
safe code. For 2), users can port RTOS interfaces incrementally,
depending on the application. During our evaluation, we noticed
a significant amount of boilerplate code for input arguments
sanitization in the safe interface, which can be generated
automatically.

Minimizing the System TCB: As CRT-C considers the kernel
inside the TCB, the monolithic nature of existing RTOSs can
bloat the code inside the TCB. The situation can be mitigated
using a microkernel design for RTOSs. However, commodity
RTOS are often monolithic in design due to the high cost of
privilege separation incurred by using compartmentalization
at the micro-kernel level. For CRT-C, we move drivers and
threads out of the TCB, essentially reflecting the microkernel
design for RTOS.

Temporal Memory Safety: CRT-C ensures spatial memory
safety in the system but does not protect again temporal memory
safety. To this end, we recommend using no-free dynamic
allocators, i.e., once a memory region is allocated it cannot
be released or freed. Especially for safety certification and
automotive coding standards, this is the norm, as dynamic
memory allocation is the antithesis of determinism.

Direct Memory Access (DMA): DMA directly accesses
memory without CPU intervention. While DMA is programmed
using MMIO registers, the memory transfer carried out by
the DMA controller is external to the CPU core and escapes
the CPU’s memory protection mechanisms. While CRT-C
can explicitly control the ownership of the DMA controller,
the DMA driver can access any memory belonging to any
compartment in the system using DMA. To this end, the DMA
driver can take advantage of the ownership tracking from the

2 Attackers might be able to carry out race conditions vulnerabilities, such
as Time-Of-Check-To-Time-Of-Use (TOCTTOU), without a memory fault.

13

compatibility layer to ensure that the DMA controller does
not transfer memory across compartments. Furthermore, DMA
controllers can be exploited by malicious peripherals to initiate
memory access across different compartments. To mitigate
attacks from malicious peripherals, an IOMMU is needed.
Extending Compartments: Currently CRT-C only allows pre-
defined compartments in the system. We have modeled the
existing RTOS compartments with the least privilege as the
security goal for CRT-C. While these compartments should be
enough to model all required compartments in the system, we
can bring more flexibility to our design by dynamically adding
a new type of compartment and programming the allowed
capabilities for it. We plan to explore this direction in future
work.

IX. RELATED WORK

Embdded Security Frameworks: General purposes systems
employ various techniques, such as architecture-based counter-
measures [48]], safe languages [46], [62], static [44], [[74] and
dynamic code checkers [27]], [32], [45], [52], [[75], sandboxing
[40], [41]], etc., to reduce the attack surface of the system. How-
ever, embedded systems present a different set of challenges,
such as a lack of a memory management unit (MMU), fewer
execution modes, and a low-power microcontroller. To mitigate
this situation, ACES [34]] compartmentalizes an embedded
system using an LLVM pass based on user specification.
EPOXY [335]] identifies privilege operations in firmware and
only runs those operations in the privilege mode. M2MON [49]]
creates a reference monitor for embedded systems to control
access to IO memory at runtime. Wang et. al, [[71] uses Minix
to provide privilege separation with the help of TPM [54] to
verify external agents. Compared to CRT-C, these solutions
are runtime solutions and incur a large overhead, as shown in
[Table T

Language-based Systems: Language-based isolation has been
used in past to secure different systems. Singularity OS [42]]
uses language-based protection instead of traditional hardware
security features to create processes in a flat address space.
Every process goes through static analysis before it can be run
with Singularity OS. Tock OS [59] implements an RTOS using
rust [55]]. In userspace, only safe rust is allowed. SafeTCL [60]]
creates a language-based restriction on TCL scripts. They use
multiple interpreters based on the capabilities attributed to a
script.

Memory Safety: There has been existing work to mitigate
the memory safety issues in C. Cyclone [46] is a safe
dialect for C that adds fat pointers and never-null pointers
in the system. CCured [62] provides a whole type system
for pointers, including safe pointers, sequence pointers, and
dynamic pointers. Each pointer can have different kinds of
operations based on the pointer type. CCured uses garbage
collection for temporal memory safety. RefinedC [67] uses
type refinements that can impose restrictions on the type.
While existing work solves the problem of memory safety
in C/C++, they do not guarantee privilege separation in the
system. CRT-C builds upon existing memory-safe language

techniques while providing whole-system compartmentalization
by adding awareness about privilege in the language.

X. CONCLUSION

In this paper, we present CRT-C, a low-cost compile-
time compartmentalization mechanism for embedded systems
to achieve privilege separation without hardware memory
protection using specialized programming language dialects.
We evaluate CRT-C on two real-world RTOSs, FreeRTOS
and Zephyr, and show that CRT-C incurs an average of
2.63% runtime overhead and 1.75% average memory overhead
which makes CRT-C a practical solution to secure real-world
embedded systems firmware.

Acknowledgments

We thank the anonymous reviewers for their valuable
comments. This work was supported in part by ONR under
Grant N00014-1-21-2328. This work is also based on research
sponsored by NSF under Grant 1801601. Any opinions,
findings, and conclusions in this paper are those of the authors
and do not necessarily reflect the views of the ONR or
NSF. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the U.S.
Government.

REFERENCES

Andrewmacleod/ranger - gcc wiki. https://gcc.gnu.org/wiki/
AndrewMacLeod/Ranger. (Accessed on 10/14/2022).
Balanced red/black tree — zephyr project documentation. https://docs
zephyrproject.org/3.0.0/reference/data_structures/rbtree.html. (Accessed
on 09/28/2022).

checkedc-clang/readme.md at master microsoft/checkedc-
clang. https://github.com/microsoft/checkedc-clang/blob/master/clang/
tools/3c/README.md. (Accessed on 03/21/2022).
Cmsis — arm developer. https://developer.arm.com/tools-and-software/
embedded/cmsis, (Accessed on 09/28/2022).
. Cve - cve-2002-2041. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2002-2041. (Accessed on 10/09/2021).
. Cve - cve-2002-2120. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2002-2120. (Accessed on 10/09/2021).
. Cve - cve-2006-0621. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2006-0621. (Accessed on 10/09/2021).
. Cve - cve-2013-2688. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2013-2688. (Accessed on 10/09/2021).
. Cve - cve-2017-14202. hhttps://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-14202, (Accessed on 10/08/2021).
. Cve - cve-2021-31571. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-31571, (Accessed on 10/12/2021).
. Cve - cve-2021-31572. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-31572, (Accessed on 10/12/2021).
Devicetree. https://www.devicetree.org/. (Accessed on 09/28/2022).
Freertos co-routines. https://www.freertos.org/croutine.html. (Accessed
on 10/17/2022).

Freertos real time kernel (rtos) / bugs / #174 freertos+io circular

buffer overflow. https://sourceforge.net/p/freertos/bugs/174/. (Accessed
on 10/08/2021).
Github - stmicroelectronics/stm32cubef4: Stm32cube mcu full package
for the stm32f4 series - (hal + Il drivers, cmsis core, cmsis device, mw
libraries plus a set of projects running on all boards provided by st (nucleo,
evaluation and discovery kits)). https://github.com/STMicroelectronics/
STM32CubeF4. (Accessed on 10/14/2022).

14

[16]

[17]
(18]

[19] .

[20] .

[21]

[22]

[23] .

[24]

[25] .

[26]

[27]

(28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

. github.com. https://github.com/microsoft/checkedc-clang. (Accessed
on 09/30/2021).

. Home. https://nuttx.apache.org/. (Accessed on 03/19/2022).

Kernel timing — zephyr project documentation. https://docs
zephyrproject.org/3.1.0/kernel/services/timing/clocks.html#. (Accessed
on 10/17/2022).

Project zero: Over the air - vol. 2, pt. 1: Exploiting the wi-fi
stack on apple devices. https://googleprojectzero.blogspot.com/2017/
09/over-air-vol-2-pt- 1-exploiting-wi-fi.html, (Accessed on 09/30/2021).
Project zero: Over the air: Exploiting broadcom’s wi-
fi stack (part 1). https://googleprojectzero.blogspot.com/2017/04/
over-air-exploiting-broadcoms-wi-fi_4.html. (Accessed on 09/30/2021).
. System view description. https://www.keil.com/pack/doc/CMSIS/SVD/
html/index.html. (Accessed on 09/27/2021).

. Systick timer (systick). https://www.keil.com/pack/doc/CMSIS/Core/
html/group__SysTick__gr.html. (Accessed on 10/08/2021).

Thinlto — clang 13 documentation. https://clang.llvm.org/docs/
ThinLTO.html. (Accessed on 09/30/2021).

. Wrapper headers (the ¢ preprocessor). https://gcc.gnu.org/onlinedocs/
cpp/Wrapper-Headers.html, (Accessed on 10/08/2021).

Zephyr project - zephyr project. |https://www.zephyrproject.org/.
(Accessed on 09/29/2021).

Chuadhry Mujeeb Ahmed, Jianying Zhou, and Aditya P Mathur. Noise
matters: Using sensor and process noise fingerprint to detect stealthy
cyber attacks and authenticate sensors in cps. In Proceedings of the
34th Annual Computer Security Applications Conference, pages 566-581,
2018.

Ali Almossawi, Kelvin Lim, and Tanmay Sinha. Analysis tool evaluation:
Coverity prevent. Pittsburgh, PA: Carnegie Mellon University, pages
7-11, 2006.

Richard Barry. Freertos - freertos queue api functions, including source
code functions to create queues, send messages on queues, receive
messages on queues, peek queues, use queues in interrupts. https:/www
freertos.org/a00018.html. (Accessed on 10/13/2021).

Richard Barry. Freertos stream buffers - circular buffers.
/Iwww.freertos.org/RTOS-stream-buffer-example.html.
10/13/2021).

Richard Barry et al. Freertos. Internet, Oct, 2008.
Matéj Bartik, Sven Ubik, and Pavel Kubalik. Lz4 compression algorithm
on fpga. In 2015 IEEE International Conference on Electronics, Circuits,
and Systems (ICECS), pages 179-182. IEEE, 2015.

Ulrich Bayer, Andreas Moser, Christopher Kruegel, and Engin Kirda.
Dynamic analysis of malicious code. Journal in Computer Virology,
2(1):67-717, 2006.

Wasim Ahmad Bhat and SMK Quadri. Performance augmentation of
a fat filesystem by a hybrid storage system. In Advanced Computing,
Networking and Informatics-Volume 2, pages 489-498. Springer, 2014.
Abraham A Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and
Mathias Payer. { ACES}: Automatic compartments for embedded systems.
In 27th {USENIX} Security Symposium ({USENIX} Security 18), pages
65-82, 2018.

Abraham A Clements, Naif Saleh Almakhdhub, Khaled S Saab, Prashast
Srivastava, Jinkyu Koo, Saurabh Bagchi, and Mathias Payer. Protecting
bare-metal embedded systems with privilege overlays. In 20/7 IEEE
Symposium on Security and Privacy (SP), pages 289-303. IEEE, 2017.
Saumya Debray, Robert Muth, and Matthew Weippert. Alias analysis of
executable code. In Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 12-24, 1998.
Amer Diwan, Kathryn S McKinley, and J Eliot B Moss. Type-based
alias analysis. ACM Sigplan Notices, 33(5):106-117, 1998.

Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi.
Checked c: Making c safe by extension. In 2018 IEEE Cybersecurity
Development (SecDev), pages 53—60. IEEE, 2018.

Maryam Emami, Rakesh Ghiya, and Laurie J Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function pointers.
ACM SIGPLAN Notices, 29(6):242-256, 1994.

Ulfar Erlingsson and Fred B Schneider. Sasi enforcement of security
policies: A retrospective. In Proceedings DARPA Information Survivabil-
ity Conference and Exposition. DISCEX’00, volume 2, pages 287-295.
IEEE, 2000.

David Evans and Andrew Twyman. Flexible policy-directed code safety.
In Proceedings of the 1999 IEEE Symposium on Security and Privacy
(Cat. No. 99CB36344), pages 32-45. IEEE, 1999.

https:
(Accessed on

https://gcc.gnu.org/wiki/AndrewMacLeod/Ranger
https://gcc.gnu.org/wiki/AndrewMacLeod/Ranger
https://docs.zephyrproject.org/3.0.0/reference/data_structures/rbtree.html
https://docs.zephyrproject.org/3.0.0/reference/data_structures/rbtree.html
https://github.com/microsoft/checkedc-clang/blob/master/clang/tools/3c/README.md
https://github.com/microsoft/checkedc-clang/blob/master/clang/tools/3c/README.md
https://developer.arm.com/tools-and-software/embedded/cmsis
https://developer.arm.com/tools-and-software/embedded/cmsis
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2041
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2041
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2120
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2120
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0621
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0621
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2688
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2688
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14202
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14202
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31571
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31571
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31572
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31572
https://www.devicetree.org/
https://www.freertos.org/croutine.html
https://sourceforge.net/p/freertos/bugs/174/
https://github.com/STMicroelectronics/STM32CubeF4
https://github.com/STMicroelectronics/STM32CubeF4
https://github.com/microsoft/checkedc-clang
https://nuttx.apache.org/
https://docs.zephyrproject.org/3.1.0/kernel/services/timing/clocks.html#
https://docs.zephyrproject.org/3.1.0/kernel/services/timing/clocks.html#
https://googleprojectzero.blogspot.com/2017/09/over-air-vol-2-pt-1-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/09/over-air-vol-2-pt-1-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://www.keil.com/pack/doc/CMSIS/SVD/html/index.html
https://www.keil.com/pack/doc/CMSIS/SVD/html/index.html
https://www.keil.com/pack/doc/CMSIS/Core/html/group__SysTick__gr.html
https://www.keil.com/pack/doc/CMSIS/Core/html/group__SysTick__gr.html
https://clang.llvm.org/docs/ThinLTO.html
https://clang.llvm.org/docs/ThinLTO.html
https://gcc.gnu.org/onlinedocs/cpp/Wrapper-Headers.html
https://gcc.gnu.org/onlinedocs/cpp/Wrapper-Headers.html
https://www.zephyrproject.org/
https://www.freertos.org/a00018.html
https://www.freertos.org/a00018.html
https://www.freertos.org/RTOS-stream-buffer-example.html
https://www.freertos.org/RTOS-stream-buffer-example.html

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

(541
[55]

[56]

[57]

[58]

[59]

[60]

[61]

Manuel Fihndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen
Hunt, James R Larus, and Steven Levi. Language support for fast and
reliable message-based communication in singularity os. In Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems 2006, pages 177-190, 2006.

William H. Harrison. Compiler analysis of the value ranges for variables.
IEEE Transactions on software engineering, (3):243-250, 1977.
Muhammad Ibrahim, Andrea Continella, and Antonio Bianchi. Aot -
attack on things: A security analysis of iot firmware updates. In 2023
IEEE 8th European Symposium on Security and Privacy (EuroS&P),
2023.

Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi. Safetynot: on
the usage of the safetynet attestation api in android. In Proceedings of the
19th Annual International Conference on Mobile Systems, Applications,
and Services, pages 150-162, 2021.

Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks,
James Cheney, and Yanling Wang. Cyclone: a safe dialect of c. In
USENIX Annual Technical Conference, General Track, pages 275-288,
2002.

Paul A Karger. Limiting the damage potential of discretionary trojan
horses. In 1987 IEEE Symposium on Security and Privacy, pages 32-32.
IEEE, 1987.

Gaurav S Kc, Angelos D Keromytis, and Vassilis Prevelakis. Countering
code-injection attacks with instruction-set randomization. In Proceedings
of the 10th ACM conference on Computer and communications security,
pages 272-280, 2003.

Arslan Khan, Hyungsub Kim, Byoungyoung Lee, Dongyan Xu, Antonio
Bianchi, and Dave Jing Tian. M2mon: Building an mmio-based security
reference monitor for unmanned vehicles. In 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

Douglas Kilpatrick. Privman: A library for partitioning applications. In
USENIX Annual Technical Conference, FREENIX Track, pages 273-284,
2003.

Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, By-
oungyoung Lee, Xiangyu Zhang, and Dongyan Xu. Securing real-time
microcontroller systems through customized memory view switching. In
NDSS, 2018.

Hyungsub Kim, Muslum Ozgur Ozmen, Z Berkay Celik, Antonio Bianchi,
and Dongyan Xu. Pgpatch: Policy-guided logic bug patching for robotic
vehicles. In 2022 IEEE Symposium on Security and Privacy (SP), pages
1826-1844. IEEE, 2022.

Taegyu Kim, Vireshwar Kumar, Junghwan Rhee, Jizhou Chen, Kyungtae
Kim, Chung Hwan Kim, Dongyan Xu, and Dave Jing Tian. {PASAN}:
Detecting peripheral access concurrency bugs within {Bare-Metal }
embedded applications. In 30th USENIX Security Symposium (USENIX
Security 21), pages 249-266, 2021.

Steven L Kinney. Trusted platform module basics: using TPM in
embedded systems. Elsevier, 2000.

Steve Klabnik and Carol Nichols. The Rust Programming Language
(Covers Rust 2018). No Starch Press, 2019.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1-19. IEEE,
2019.

Maxwell N Krohn, Petros Efstathopoulos, Cliff Frey, M Frans Kaashoek,
Eddie Kohler, David Mazieres, Robert Tappan Morris, Michelle Osborne,
Steve VanDeBogart, and David Ziegler. Make least privilege a right (not
a privilege). In HotrOS, 2005.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In International Symposium
on Code Generation and Optimization, 2004. CGO 2004., pages 75-86.
IEEE, 2004.

Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Shane
Leonard, Pat Pannuto, Prabal Dutta, and Philip Levis. The tock embedded
operating system. In Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems, pages 1-2, 2017.

Jacob Y Levy, Laurent Demailly, John K Ousterhout, and Brent B Welch.
The safe-tcl security model. In USENIX Annual Technical Conference,
1998.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, et al. Meltdown: Reading kernel memory from user space. In

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

27th {USENIX} Security Symposium ({USENIX} Security 18), pages
973-990, 2018.

George C Necula, Scott McPeak, and Westley Weimer. Ccured: Type-safe
retrofitting of legacy code. In Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
128-139, 2002.

Aleph One. Smashing the stack for fun and profit. Phrack magazine,
7(49):14-16, 1996.

Fabio Pasqualetti, Florian Dorfler, and Francesco Bullo. Cyber-physical
attacks in power networks: Models, fundamental limitations and monitor
design. In 2011 50th IEEE Conference on Decision and Control and
European Control Conference, pages 2195-2201. IEEE, 2011.

Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege
escalation. In /2th USENIX Security Symposium (USENIX Security 03),
2003.

Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
Return-oriented programming: Systems, languages, and applications.
ACM Transactions on Information and System Security (TISSEC), 15(1):1-
34, 2012.

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memar-
ian, Derek Dreyer, and Deepak Garg. Refinedc: automating the
foundational verification of ¢ code with refined ownership types. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pages 158174,
2021.

Fred B Schneider. Least privilege and more [computer security]. IEEE
Security & Privacy, 1(5):55-59, 2003.

Frangois-Xavier Standaert. Introduction to side-channel attacks. In Secure
integrated circuits and systems, pages 27-42. Springer, 2010.

Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow analysis
in llvm. In Proceedings of the 25th international conference on compiler
construction, pages 265-266, 2016.

Xiaolong Wang, Masaaki Mizuno, Mitch Neilsen, Xinming Ou, S Raj
Rajagopalan, Will G Boldwin, and Bryan Phillips. Secure rtos architecture
for building automation. In Proceedings of the First ACM Workshop on
Cyber-Physical Systems-Security and/or PrivaCy, pages 79-90, 2015.
Mark N Wegman and F Kenneth Zadeck. Constant propagation with
conditional branches. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(2):181-210, 1991.

Mark Weiser. Program slicing. IEEE Transactions on software
engineering, (4):352-357, 1984.

Jianliang Wu, Ruoyu Wu, Daniele Antonioli, Mathias Payer, Nils Ole
Tippenhauer, Dongyan Xu, Dave Jing Tian, and Antonio Bianchi.
Lightblue: Automatic profile-aware debloating of bluetooth stacks. In
Proceedings of the USENIX Security Symposium (USENIX Security),
2021.

Ruoyu Wu, Taegyu Kim, Dave Jing Tian, Antonio Bianchi, and Dongyan
Xu. {DnD}: A {Cross-Architecture} deep neural network decompiler.
In 31st USENIX Security Symposium (USENIX Security 22), pages 2135—
2152, 2022.

Mark Yampolskiy, Peter Horvath, Xenofon D Koutsoukos, Yuan Xue, and
Janos Sztipanovits. Taxonomy for description of cross-domain attacks
on cps. In Proceedings of the 2nd ACM international conference on
High confidence networked systems, pages 135-142, 2013.

Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. Good motive but
bad design: Why arm mpu has become an outcast in embedded systems.
arXiv preprint arXiv:1908.03638, 2019.

APPENDIX A
CRT-C RESTRICTIONS ON CHECKEDC.

During our security evaluation, we also uncovered a bug
in CheckedC implementation that allowed dynamic casting to
incompatible types within the checked scope violating spatial
memory safety. The following listing shows a minimal code
to highlight the vulnerability.

(O B SNV S

15

typedef struct {
ptr<int> a;
} STRUCT;
void break (void) {
char temp checked[100];

6 pPtr<STRUCT> s = NULL;

7 s = dynamic_bounds_cast<ptr<STRUCT>>
8 (&temp[20]);

9 int a;

10 s—>a = (ptr<int>)&a;

11 temp[20] = OxABj;

12 temp[21] = 0xCD;

13 temp[22] = OxEF;

14 }

On line 5, the code allocates a 100-byte large character buffer,
temp, on the stack. Next, at line 7, the code casts temp
to a structure s with a pointer field. However, the compiler
does not complain about the incompatible typecast. As a
result, the attacker has legitimate access to the temp buffer
and can legally dereference the pointer field a in structure
s. Therefore, attackers can perform arbitrary memory access
within a checked scope by modifying temp and accessing the
pointer field. Unlike CheckedC, we have restricted dynamic
casting within CRT-C. The issue has been reported and
confirmed by CheckedC developers.

APPENDIX B
EVALUATION DATASET.

Our evaluation dataset consists of standard applications
shipped with FreeRTOS and Zephyr RTOS. Furthermore, we
also port some applications from STM32CubeF4 [15] firmware
package to FreeRTOS. To ensure that our dataset is reflective
of real-world applications, we pick applications that cover
different facets of real-world applications. To this end, we
categorize our dataset into three categories:

Math: These applications implement different mathematical
operations and are generally CPU-intensive applications, in-
cluding Compression and Integer. Compression implements the
LZ4 [31] compression algorithm, whereas the Integer demo
conducts a series of arithmetic operations.

Device: These applications interface with different peripheral
devices, and in general, are 1O-intensive applications. Echo
implements a loopback on the Universal Asynchronous Re-
ceiver/Transmitter(UART) device. Similarly, Console imple-
ments a simple console on the UART device. Thread Flash and
Coroutine Flash are General Purpose 10 (GPIO) applications,
implementing an LED flashing application. Thread Flash uses
threads, whereas Coroutine Flash uses lightweight tasks called
Coroutines [|13] to achieve the same goal. Lastly, FatFS-uSD
implements a File Allocation Table (FAT) [33]] filesystem on
an external MicroSD (uSD) card, interfaced using a Serial
Peripheral Interface (SPI) bus.

IPC: These applications demonstrate different inter-process
communication primitives available on commodity RTOS.
StreamBuffer demonstrates a single-writer single-reader queue
to communicate between two tasks. Queue Set uses RTOS
queues to communicate between two tasks. Lastly, recursive
mutex utilizes mutex to synchronize among different threads.

We also present some insights about the firmware of
each application, as shown in Most applications
show similar statistics, whereas FatFS-uSD and Compression
applications show a much higher pointer usage. For presentation

16

aindirect calls @aPointer Reads oPointer Writes

mPointer Arithmetics ~ mSLOC*

Math Device IPC

FEERERERTY

Y 7 7

.mH.WH_mH_mH_H H.Hﬂlmﬂlmﬂu
(<\

OISR S

AN
Q'

L N @ > S
S F &£ &P ¢ P
& & & N =t O 2 RS N\
& N S S 4 & @ @
N & & o @Qé\ o &
oy < L & N
N <®

Fig. 11: Various statistics about the firmware of evaluated application.
Y-axis shows the metric value, while X-axis shows the application
(*SLOC is only for the application/thread code.).

purposes, we suffix the application name with the underlying
RTOS. Applications with the suffix (Z) are Zephyr applications,
whereas the suffix (F) is used for FreeRTOS applications.

APPENDIX C
PORTING LEGACY FIRMWARE TO CRT-C:

CRT-C provides a semi-automatic mechanism to compart-

mentalize legacy embedded systems. Most of the work is
automated using static analyses. If user intervention is required,
CRT-C points to the violating instructions to help users adapt
existing firmware to CRT-C. In this section, we highlight a
few case studies to demonstrate the porting effort for adapting
CRT-C for an existing firmware. Once an existing RTOS is
ported to CRT-C, future applications can use the modified
RTOS. Therefore, we split the porting overhead into two
categories: 1) RTOS porting, and 2) Application porting.
RTOS Porting - FreeRTOS. In this case study, we demon-
strate the porting process for FreeRTOS. We start with
CORTEX_MA4F_STM32F407ZG-SK port and modify the code
to make it compatible with clang. We consider this the
starting point for our porting process. CRT-C is just a drop-
in replacement for clang. CRT-C emits several errors listed
below:
Unbounded I/O Errors: The first set of errors is regarding
unbounded MMIO accesses. In FreeRTOS, we encountered four
unbounded MMIO access errors. These errors are thrown when
the VRA analysis does not converge. The first two errors are
thrown from the Nested Vectored Interrupt Controller (NVIC)
and External Interrupt Controller (EXTI). The NVIC driver
uses an IRQ number as an index to offset the MMIO region
to write the NVIC configuration register as shown belov&ﬂ

1 void NVIC_ClearPendingIRQ (IRQn_Type IROn) {
2 NVIC->ICPR[IRQn] = PENDING_VALUE (IRQn);
3 3

We add a check on the IRQ number to keep it within a fixed
range, resolving the unbounded IO error. Similarly, the EXTI
driver uses the configuration parameter to offset into the 10
region based as shown below.

3Code snippets are modified for brevity

t

*

mp += EXTI_InitStruct->EXTI_Trigger;
(__TO uint32_t *) tmp |= value;

1
2

We modify the driver to use a switch case on the configuration
and access I/O using fixed addresses, hence resolving the error.
E]For the last two errors, we notice that they are thrown from
the FreeRTOS kernel. To this end, we explicitly mark those
routines as kernel routines.

lllegal MMIO Pointers Usage Errors: Another set of errors,
similar to the unbounded MMIO errors, is illegal usage of
MMIO pointers. CRT-C emits an error if the firmware tries to
pass MMIO pointers as function arguments. In general, most
device drivers do not expose such an interface, however, some
do use this pattern. For instance, the GPIO driver uses the port
base address as the input argument. To this end, we modify
the interface to take an identifier for the port instead of an
MMIO address. Within the driver, we use a mapping table to
map the input identifier to the port address.

Driver Association Errors: After fixing the above errors,
CRT-C can establish an association between devices and
drivers. For FreeRTOS, all of the drivers, except NVIC, were
correctly identified by CRT-C. Upon further investigation, we
found that FreeRTOS uses macros to directly access the kernel
for interrupt control. To this end, we redirect the macro to use
the NVIC driver instead of directly accessing NVIC. In our
firmware, CRT-C was able to find five device drivers including
NVIC, GPIO, and EXTI drivers.

Checked Scope Errors: After proper association between de-
vices and drivers, CRT-C mandates the usage of safe code for
drivers and threads. CRT-C complains about the device drivers
written in unchecked dialects. To convert the existing codebase,
we utilize 3C [3] to semi-automatically convert unsafe code to
safe code in an iterative manner. A detailed discussion about
this process can be found in the 3C manual [16].

Kernel Resource Access Errors: During thread discovery,
CRT-C finds all of the threads in the system. Some privi-
leged threads are used by FreeRTOS for maintaining kernel
bookkeeping, including the idle thread and the timer thread.
Since these threads are considered part of the kernel, we mark
them as privileged threads allowing them to use kernel dialect
and freely call kernel functions.

highlight the major differences for Zephyr. The major changes
were observed for MMIO pointer accesses in the kernel: In
addition to the process creation and memory management
library, Zephyr’s balanced Red/Black Tree [2] library also
utilized MMIO pointers, resulting in 15 violations in the
kernel (compared to two in FreeRTOS). Moreover, Zephyr
uses a device tree [[12] based infrastructure instead of passing
MMIO pointers in the driver interface, thus resulting in fewer
illegal MMIO pointer usage errors. Lastly, we did not face
any kernel resource access errors, as Zephyr uses an internal
API (z_setup_new_thread) to create system-level threads,
whereas FreeRTOS uses the same API for user and kernel
threads. Overall, CRT-C threw 27 device isolation errors for
Zephyr.

Application Porting - recmutex. CRT-C automatically finds
all applications level code and enforces the thread policies
which may lead to various compile-time errors. We use the
recursive mutex application to demonstrate the application
porting process. We group the errors into different categories
and describe how we fix each error and get the application
compiled by CRT-C.

Checked Scope Errors: The recmutex app uses three threads.
For each thread, CRT-C reports that they are not written in
a safe dialect. Similarly to RTOS porting, we can use the 3C
tool to automatically convert the unsafe code to safe code.
Kernel Resource Access Errors: For new applications, CRT-C
throws a type error when a user thread directly calls kernel
APIL For the recmutex app, CRT-C reports 18 calls to system
code, with four distinct APIs. Instead of modifying the source
code to replace the original call with the new safe interface,
we design the new safe interface to be compatible with the
original API, by redefining functions in the compatibility layer
header file, as shown below:

For example, xSemaphoreTakeRecursive is an exist-
ing FreeRTOS API to take a semaphore. The API requires a
handle to the mutex of type SemaphoreHandle_t and the
number of ticks the API is allowed to wait. However, CRT-C
does not allow user tasks to handle raw pointers to kernel
objects. Therefore, the compatibility layer redefines the raw
pointer to a safe pointer as shown below:

1
2

KERNEL_THREAD
static portTASK_FUNCTION (prvIdleTask)

1 #define SemaphoreHandle_t const ptr<Queue>

After these modifications, the firmware passes all of the
CRT-C checks. Overall, CRT-C threw 11 device isolation-
related errors and three kernel resource access-related issues
for FreeRTOS. For FreeRTOS we modified around 500 SLOC
for resolution of compile-time errors, which is negligible
considering the codebase consisted of 79K SLOC|

We see similar errors for Zephyr, since both RTOS adapt
their drivers from CMSIS [4] libraries. Therefore, we only

4Constraining the configuration input in the faulting function is also a viable
solution.

5Complete FreeRTOS consists of 4M SLOC, we only consider the FreeRTOS
kernel for source code comparison.

This enables transparent redefinition of all mutex handles
in the application. However, due to this redefinition, the old
API becomes incompatible with the redefined handle type.
Therefore, to this end, the compatibility layer defines a safe
interface that is compatible with the safe handle as shown
below:

1
2

#define xSemaphoreTakeRecursive (mut, tick)
SafeQueueTakeMutexRecursive (mut, tick)

17

The safe interface has the same interface as the legacy
API but uses safe handles instead of raw pointers to kernel
objects. However, since the raw pointers are already redefined,
we can use existing code without any modifications by using
the compatibility layer. The safe interface sanitizes the input

arguments before passing them to the kernel and tracks the
ownership of any dynamic objects. To port the recmutex app,
we extend the compatibility layer for all four APIs used by
the application. We provide a helper library for object tracking.
Note that, once the interfaces are added to the compatibility
layer, future applications can easily use this function without
any modifications, which drastically eases the adaption process
for CRT-C.

Object Sharing Errors: CRT-C also reports any implicit shar-
ing of data between different threads. For the recmutex app,
CRT-C reported a total of six errors. In general, the resolution
of each error is case by case. For instance, in the recmutex, all
threads share a global variable to set the status of the demo.
Therefore, we explicitly share the variable among all of the
threads as shown in the following listing:

1 OWNER (taskA ,taskB , taskC)
2 BaseType_t xErrorOccurred = pdFALSE;

18

	Introduction
	Background
	Real-Time Operating Systems (RTOS)
	Compartmentalization
	CheckedC

	Security Model
	Overview
	Design
	Compartments
	Policies
	Mechanisms
	Legacy systems adaption:

	Implementation
	Evaluation
	Security Evaluation
	Case Studies:
	Overhead Evaluation

	Discussion
	Related Work
	Conclusion
	References
	Appendix A: CRT-C restrictions on CheckedC.
	Appendix B: Evaluation Dataset.
	Appendix C: Porting legacy firmware to CRT-C:

